
Post-Newtonian Description

of Quantum Systems

in Gravitational Fields

Von der QUEST-Leibniz-Forschungsschule
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation
von

M. A. St. Philip Klaus Schwartz,

geboren am 12.07.1994 in Langenhagen.

2020



Mitglieder der Promotionskommission:

Prof. Dr. Elmar Schrohe (Vorsitzender)
Prof. Dr. Domenico Giulini (Betreuer)
Prof. Dr. Klemens Hammerer

Gutachter:

Prof. Dr. Domenico Giulini
Prof. Dr. Klemens Hammerer
Prof. Dr. Claus Kiefer

Tag der Promotion: 18. September 2020

This thesis was typeset with LATEX 2ε and the KOMA-Script class scrbook. The main fonts
are URW Palladio L and URW Classico by Hermann Zapf, and Pazo Math by Diego Puga.



Abstract

This thesis deals with the systematic treatment of quantum-mechanical systems situated
in post-Newtonian gravitational fields. At first, we develop a framework of geometric
background structures that define the notions of a post-Newtonian expansion and
of weak gravitational fields. Next, we consider the description of single quantum
particles under gravity, before continuing with a simple composite system. Starting
from clearly spelled-out assumptions, our systematic approach allows to properly
derive the post-Newtonian coupling of quantum-mechanical systems to gravity based
on first principles. This sets it apart from other, more heuristic approaches that are
commonly employed, for example, in the description of quantum-optical experiments
under gravitational influence.

Regarding single particles, we compare simple canonical quantisation of a free
particle in curved spacetime to formal expansions of the minimally coupled Klein–
Gordon equation, which may be motivated from the framework of quantum field theory
in curved spacetimes. Specifically, we develop a general WKB-like post-Newtonian
expansion of the Klein–Gordon equation to arbitrary order in the inverse of the velocity
of light. Furthermore, for stationary spacetimes, we show that the Hamiltonians arising
from expansions of the Klein–Gordon equation and from canonical quantisation agree
up to linear order in particle momentum, independent of any expansion in the inverse
of the velocity of light.

Concerning the topic of composite systems, we perform a fully detailed systematic
derivation of the first order post-Newtonian quantum Hamiltonian describing the
dynamics of an electromagnetically bound two-particle system which is situated in
external electromagnetic and gravitational fields. This calculation is based on previous
work by Sonnleitner and Barnett, which we significantly extend by the inclusion of
a weak gravitational field as described by the Eddington–Robertson parametrised
post-Newtonian metric.

In the last, independent part of the thesis, we prove two uniqueness results char-
acterising the Newton–Wigner position observable for Poincaré-invariant classical
Hamiltonian systems: one is a direct classical analogue of the well-known quantum
Newton–Wigner theorem, and the other clarifies the geometric interpretation of the
Newton–Wigner position as ‘centre of spin’, as proposed by Fleming in 1965.

Keywords: quantum systems under gravity, post-Newtonian expansion,
post-Newtonian gravity, weak gravity iii





Zusammenfassung

Diese Arbeit beschäftigt sich mit der systematischen Beschreibung quantenmechani-
scher Systeme in post-Newton’schen Gravitationsfeldern. Zunächst entwickeln wir geo-
metrische Hintergrundstrukturen, welche die Konzepte einer post-Newton’schen Ent-
wicklung und schwacher Gravitationsfelder zu definieren ermöglichen. Anschließend
beschäftigen wir uns mit der Beschreibung einzelner Quantenteilchen unter Gravitation
und wenden uns schließlich einem einfachen zusammengesetzten System zu. Unsere
von klar formulierten Annahmen ausgehende systematische Vorgehensweise ermöglicht
es, die post-Newton’sche Kopplung quantenmechanischer Systeme an Gravitation im
eigentlichen Sinne herzuleiten. Dies unterscheidet sie von anderen, heuristischeren
Herangehensweisen, wie sie beispielsweise oft zur Beschreibung quantenoptischer
Experimente unter Gravitation benutzt werden.

Für einzelne Teilchen vergleichen wir die einfache kanonische Quantisierung freier
Teilchen in gekrümmten Raumzeiten mit formalen Entwicklungen der minimal gekop-
pelten Klein-Gordon-Gleichung, welche quantenfeldtheoretisch motiviert werden kön-
nen. Konkret entwickeln wir eine allgemeine WKB-artige post-Newton’sche Entwicklung
der Klein-Gordon-Gleichung zu beliebiger Ordnung im Inversen der Lichtgeschwindig-
keit. Ferner zeigen wir für stationäre Raumzeiten, dass die Hamilton-Operatoren,
welche aus Entwicklungen der Klein-Gordon-Gleichung bzw. mit kanonischer Quanti-
sierung hergeleitet werden, zu linearer Ordnung im Teilchenimpuls übereinstimmen,
unabhängig von jeglicher Entwicklung im Inversen der Lichtgeschwindigkeit.

Wir leiten den in erster Ordnung post-Newton’schen Hamiltonoperator vollständig
her, der die Dynamik eines elektromagnetisch gebundenen Zwei-Teilchen-Systems
beschreibt, das sich in sowohl einem externen elektromagnetischen als auch einem
Gravitationsfeld befindet. Diese Rechnung basiert auf einer Arbeit von Sonnleitner und
Barnett, die wir durch die Einbeziehung der Gravitation maßgeblich erweitern.

Im letzten, unabhängigen Teil der Arbeit beweisen wir zwei Eindeutigkeitsresulta-
te über die Newton-Wigner-Ortsobservable für Poincaré-invariante klassische Hamil-
ton’sche Systeme. Eines ist ein direktes klassisches Analogon des quantenmechanischen
Newton-Wigner-Satzes; das andere gibt eine klare Charakterisierung der geometrischen
Interpretation des Newton-Wigner-Orts als „Spin-Zentrum“, die 1965 von Fleming
vorgeschlagen wurde.

Schlagworte: Quantensysteme unter Gravitation, post-Newton’sche Entwicklung,
post-Newton’sche Gravitation, schwache Gravitation v





Summarium1

hoc opus est de descriptione sastematica systematium mechanicorum quanticorum in
campis gravitalibus post Newtonum. primo recessas structuras geometricas elaborabi-
mus, quibus consilia expansionis post Newtonum parvisque campis gravitalibus definiri
potest. deinde descriptioni singulorum particulorum quanticorum sub gravitatione
studebimus atque ultimo in systemate composito facili versabimur. ab praesumptioni-
bus clare conceptis systematice procedenti post Newtonum copulationem systematium
mechanicorum quanticorum ad gravitationem proprie dedicare poterimus. qui modus
procedendi ab aliis, heuristicis, velut ad experimenta optica quantica describendum
utuntur, differt.

quod attinet ad singula particula, quantificationem canonicam facilem particulorum
nullas vires experientum in spatiotemporibus curvatis cum expansionibus formali-
bus equationis Kleini Gordonique minime copulatae, quae ex ratione quanticorum
camporum motivari possunt, comparabimus. proprie ad dicendum post Newtonum
expansionem generalem WKB-bilem equitationis Kleini Gordonique ad quamlibet or-
dinem in inverso velocitatis lucis faciemus. quod praeterea attinet ad spatiotempora
stationaria, operatores Hamiltoni de expansionibus equationis Kleini Gordonique aut
cum quantificatione canonica dedicatos in ordine lineali inter se impetu particulorum
consentire demonstrabimus. quod non obnoxium cuicumque expansioni in inverso
velocitatis lucis est.

quod attinet ad systemata coniuncta, operatorem Hamiltoni in prima ordine post
Newtonum radicite dedicemus, qui dynamiken systematis ex duobus particulis electro-
magnetice coniuncti describit, quod et in campo electromagnetico et in campo gravi-
tale est. quae ratio in opere Sonnleitneri Barnettique posita est, quod gravitationem
comprehendendo augebimus multo.

ultima in parte absoluta huius operis duos exitus perspicuitatis de loci quantitate
Newtoni Wignerique, quod attinet ad systemata Hamiltoni classica invarianta secun-
dum Poincareum, demonstrabimus. alius est analogon classicum directum mechanici
quantici theorematis Newtoni Wignerique; alio locus Newtoni Wignerique pro ‘me-
dio impetus rotationis interni’ geometrice interpretatur, ut Flemingus proposit anno
MMDCCXVIII ab urbe condita.

proposita: systemata quantica in gravitatione, expansio post Newtonum,
gravitatio post Newtonum, gravitatio parva

1translatus de Philippo Sandero vii
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1. Introduction

Imagine we are given a quantum-mechanical system whose time evolution in the
absence of gravity is known in terms of the ordinary time-dependent Schrödinger
equation. In other words: we know the system’s Hamiltonian if all gravitational
interactions are neglected. We now ask: which principles do we use in order to
deduce the system’s interaction with a given external gravitational field? Note that
by ‘gravitational field’ we understand all the ten independent components gµν of the
spacetime metric, subject to Einstein’s field equations of general relativity – or, more
generally, to the equations of some other metric theory of gravity – and not just the
scalar component φ representing the Newtonian potential.

In fact, for Newtonian gravity there is no problem at all in describing its coupling
to ordinary quantum mechanics: we may simply include a background Newtonian
gravitational potential φ into the Schrödinger equation describing a ‘non-relativistic’1

particle of mass m and zero spin, giving

ih̄∂tψ =

(
− h̄2

2m
∆ + mφ

)
ψ. (1.0.1)

This equation has extensively been tested in the gravitational field of the earth, begin-
ning with neutron interferometry in the classic Colella–Overhauser–Werner experiment
[COW75] and leading up to atom interferometers of the Kasevich–Chu type, accom-
plishing, e.g., highly precise measurements of the gravitational acceleration g on the
earth [Far+14]. We ask what kind of ‘post-Newtonian corrections’ to this equation
arise from general relativity or other metric theories of gravity, considering additional
terms involving the Newtonian potential φ as well as new terms involving all metric
components.

1As a matter of principle, we try to avoid the common but misleading adjective ‘non-relativistic’ to
distinguish Galilei-invariant dynamical laws from ‘relativistic’ ones, by which one then means those
obeying Poincaré invariance. It is not the validity of the relativity principle that distinguishes both
cases, but rather the way which that principle is implemented in. Nevertheless, since we cannot entirely
escape traditionally established nomenclature, we will occasionally use the term ‘non-relativistic’ in
the sense just explained and think of it as always being put between inverted commas.
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1. Introduction

The behaviour of quantum systems in general gravitational fields is naturally of
fundamental conceptual theoretic interest. However, it is also of immediate practical
importance, relating to recent experimental developments in quantum optics and
matter-wave interferometry: these have now reached a degree of precision that covers
‘relativistic corrections’ which were hitherto not considered in such settings. In particu-
lar, this includes couplings between ‘internal’ and ‘centre of mass’ degrees of freedom
of composite systems without a Newtonian analogue – as for example induced by
post-Newtonian gravitational fields. The most famous example for a possible implica-
tion of such couplings is probably the controversially discussed topic of gravitationally
induced quantum dephasing [Zyc+11; Pik+15; BOS15; PCK16]. Other experimentally
inclined topics for which the gravity–quantum matter coupling beyond Newton is rel-
evant include, for example, atom interferometric gravitational wave detection [GWZ18],
quantum tests of the classical equivalence principle [Sch+14], or proposals of quantum
formulations of the equivalence principle [ZB18] and tests thereof [Ros+17].

Clearly, such experiments require proper ‘relativistic’ treatments for their theoretical
descriptions, that may be trusted as describing the situation in a correct way. However,
the descriptions one finds in the literature are often restricted to the more or less ad hoc
addition of ‘relativistic effects’ known from classical physics, such as velocity-dependent
masses, second-order Doppler shifts, or redshifted energies and time dilations due to
relative velocities and/or gravitational potentials; see, e.g., [Dim+08; Zyc+11; Pik+15;
Rou18; Gie+19; Lor+19; ZRP19]. Such approaches are conceptually dangerous for a
number of reasons: they neither guarantee completeness and independence of the
‘relativistic effects’, nor do they need to apply in non-classical situations where quantum
properties dominate the dynamics. Namely, as is common in atom interferometry, these
treatments make use in an essential way of semi-classical notions like ‘wordline’ and
‘redshift’, which have no immediate meaning in quantum theory unless the state of the
system is severely restricted in an a priori fashion: the overall pure state of the system
has to be assumed to separate into the tensor product of a pure state for the centre of
mass degrees of freedom with a pure state for the relative degrees of freedom; and
furthermore, the state for the centre of mass has to be of semiclassical nature, so as
to determine a worldline for which the notion of proper time can be defined.2 It may
well be that these a priori restrictions can be justified in specific applications within
quantum optics and atom interferometry. However, we wish to promote the view
that the theoretical problem of describing the coupling between quantum-mechanical
systems and post-Newtonian gravity should be solved independently of such restrictions,
in a systematic and well-defined way. Such a proper systematic derivation of the

2We recall that the path integral in ordinary quantum mechanics generally receives contributions
from continuous but nowhere differentiable paths. Only in very special situations is the dominant
contribution given by the action along a smooth classical path, such that one may define an arc length,
i.e. a proper time.
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coupling will also make sure that all relevant ‘relativistic corrections’ to the Newtonian
description are present, and that none is included multiple times.

In answering the question of what such a systematic coupling procedure could look
like, we have to address a conceptual difficulty that does not arise for classical systems.
Namely, for classical matter obeying Poincaré-invariant dynamical laws, there is a
systematic, almost algorithmic procedure one can employ in order to couple it to metric
theories of gravity: the usual ‘minimal coupling scheme’. We recall that, in a nutshell,
this scheme consists in a two-step process [MTW73]: first, write down the matter’s
dynamical law in a Poincaré-invariant fashion in Minkowski spacetime; second, replace
the flat Minkowski metric η by the potentially curved Lorentzian metric g of spacetime,
and the partial derivatives with respect to the affine inertial coordinates of Minkowski
spacetime (i.e. the covariant derivatives with respect to η) by Levi–Civita covariant
derivatives with respect to g. This gives a unique way of coupling classical matter
fields to metric theories of gravity, up to the well-known issue of curvature ambiguities
(arising from the non-commutativity of covariant derivatives in the curved case) and
the possibility of non-minimal coupling (i.e. explicit coupling to the curvature tensor).

The minimal coupling scheme is rooted in Einstein’s equivalence principle, whose
essence is that ‘gravity’ can be fully encoded in the metric geometry of spacetime,
which is common to all matter components. We stress that this is the important point,
encoding the universality of gravitational interaction: any matter component, be it some
elementary particle with or without mass, spin, electric charge, or other features, or
be it a macroscopic body, like a football or a planet, will couple to gravity in a way
that only depends on one and the same geometry of spacetime; compare [TLL73] and
[Wil93]. Note that this does in no way imply that all bodies ‘fall’ in the same way: for a
realistic body, which is spinning and/or possesses mass multipoles of higher order than
the single monopole of an idealised ‘test particle’, any approximate ‘central worldline’
will depend on the characteristics of the body and deviate from that of a test particle
(i.e. a geodesic). However, as long as all these deviations find their explanations in
couplings to the spacetime geometry, no violation of the equivalence principle should
be concluded. This remark also applies in connection with attempts to formulate
the equivalence principle in quantum mechanics: simple quantum translations of
some notion of ‘universality of free fall’ – as the Newtonian one proposed in [ZB18] –
should not be seen as capturing any core statement of the equivalence principle; to
the contrary, they even bear the danger of falsely concluding violations. Furthermore,
such formulations depend on notions of ‘worldlines’, and thus are based on a priori
assumptions concerning the state of the matter. We are convinced that any possible
generally valid implementation of the equivalence principle into quantum mechanics
should not make such assumptions. An extensive discussion of these important
conceptual issues may be found in our article [SG19b].

3



1. Introduction

We now return to the more concrete question of systematic coupling procedures of
quantum mechanics to gravitational fields. The above-mentioned conceptual problem
which we face here is that the minimal coupling scheme simply cannot be applied in
that case: ordinary quantum mechanics is Galilei-invariant, and so even the first step of
the minimal coupling procedure cannot be implemented. As is well-known, enforcing
Poincaré symmetry upon quantum mechanics eventually leads to the framework of
Poincaré-invariant quantum field theory, often called ‘Relativistic Quantum Field
Theory’ (RQFT), whose mathematical structure and physical interpretation is far more
complex than that of ordinary ‘non-relativistic’ quantum mechanics. In particular, RQFT

does not have a form similar to a usual, classical field theory on Minkowski spacetime –
i.e. also RQFT cannot be coupled to metric gravity by a direct application of the minimal
coupling scheme. Instead, the framework of quantum field theory in curved spacetimes
(QFTCS) applies minimal coupling at the classical level, and then employs methods to
quantise the minimally coupled classical field theories [BF09; Wal94].

So we are lead to accept the fact that it does not seem to be possible to couple an
‘already quantised’ theory to gravity, and thus to turn to QFTCS as the best available
solution for the systematic description of gravity–quantum matter coupling. Does that
mean we would have to employ the whole machinery of QFTCS in order to just answer
simple questions concerning matter–gravity interactions that go beyond the simplest
couplings to the Newtonian potential? We think that the answer is no, at least as long as
we are merely interested in leading order ‘relativistic corrections’ below the threshold
of quantum-field-theoretic pair production, and as long as the spacetime geometry is at
least approximately stationary, such that there is a consistent field-theoretic concept
of particles. At the same time, we think that the alternative to full QFTCS should not
consist of ad hoc procedures guided by more or less well founded ‘physical intuition’.
Rather we should look for general and systematic methods that allow to derive the full
coupling, and arguably qualify as a proper post-Newtonian approximation. This thesis
aims to provide a positive contribution to this end.

1.1. Plan of this thesis

In chapter 2, we will set up the conceptual framework for our systematic post-
Newtonian expansions in the following chapters: we introduce a set of geometric
background structures that enable us to define the notions of weak gravitational fields
and post-Newtonian expansions.

Based on this framework, chapter 3 will deal with the systematic description of
single quantum particles under gravity. We introduce a simple method of canonical
quantisation of a free particle in a post-Newtonian spacetime, and aim to compare

4



1.1. Plan of this thesis

its results to methods which are more firmly rooted in first principles. Therefore,
motivated from QFTCS, we develop two different kinds of formal post-Newtonian
expansions of the minimally coupled Klein–Gordon equation, and compare their results
to those from the canonical quantisation method. This will lead to the conclusion that
at the lowest relevant post-Newtonian orders, simple canonical quantisation may safely
be employed.

Chapter 4 will continue the investigation with the study of a simple composite
quantum system in post-Newtonian gravity. We consider a simple ‘atomic’ system con-
sisting of two electromagnetically bound bosonic particles, situated in an external elec-
tromagnetic field as well as an external gravitational field described by the Eddington–
Robertson parametrised post-Newtonian metric. We give a fully detailed systematic
derivation of the first order post-Newtonian quantum Hamiltonian describing the
dynamics of the atomic system in this situation.

The last proper chapter 5 is entirely independent of the rest of the thesis: it is con-
cerned with the investigation of the special-relativistic localisation problem for classical
(i.e. non-quantum) systems, in particular with characterisations of the Newton–Wigner
position observable for such systems. Even though this topic is almost completely
disconnected from the description of quantum systems in post-Newtonian gravity, it
arose in a natural way from the investigations in chapter 4. For this reason, and due to
the particular conceptional and mathematical beauty I (the author) see in the results
obtained in this chapter, I decided to include it into this thesis.

We end with a few concluding remarks in chapter 6.

Publication list

This thesis is based on the following articles, as indicated in the beginning of the
chapters:

[SG19a] Philip K. Schwartz and Domenico Giulini. ‘Post-Newtonian corrections to
Schrödinger equations in gravitational fields’. Class. Quantum Grav. 36 (2019),
095016. doi: 10.1088/1361-6382/ab0fbd. Corrigendum published in Class.
Quantum Grav. 36 (2019), 249502.

[SG19b] Philip K. Schwartz and Domenico Giulini. ‘Post-Newtonian Hamiltonian
description of an atom in a weak gravitational field’. Phys. Rev. A 100 (2019),
052116. doi: 10.1103/PhysRevA.100.052116

[SG20] Philip K. Schwartz and Domenico Giulini. Classical perspectives on the Newton–
Wigner position observable. 2020. arXiv: 2004.09723 [math-ph]
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2. Geometric structures for
post-Newtonian expansions

In an arbitrary general-relativistic1 spacetime, the concept of a ‘post-Newtonian
expansion’ does not exist per se: to make sense of it, we need to introduce certain
background structures that give meaning to notions like ‘weak gravitational fields’
and ‘slow velocities’ of objects in the spacetime. This chapter will be devoted to the
introduction of such structures and the description of our post-Newtonian expansion
framework, which will be used in the subsequent chapters. We also use this chapter to
introduce some further notations and conventions.

This chapter is partly based on the sections introducing the corresponding concepts
in [SG19b], and also incorporates material from [SG19a].

2.1. General conventions

We use the ‘mostly plus’ (−+++) signature convention for the spacetime metric and
stick, as indicated, to four dimensions. However, in many places our work has a
straightforward generalisation to higher dimensions. The velocity of light will be
denoted by c, and not set equal to 1.

When talking about Minkowski spacetime, we will view it as an affine space or, even
more often, as an abstract differentiable manifold endowed with a Lorentzian metric,
and not identify it with a vector space, unless otherwise stated.

2.2. Background structures

As soon as gravity is geometrised in a metric sense, it does not make sense to speak of
the ‘absence’ of gravitational fields2, and therefore also not of their ‘weakness’ – this
can only be spoken of with respect to some background metric to compare the physical
metric to. This background metric then defines the concept of ‘absence’ of gravity.

1Or described by any other metric theory of gravity.
2This is not necessarily true in all geometric theories of gravitation. For example, in teleparallel gravity

theories, inertial and gravitational effects can be naturally separated [Per14].

7



2. Geometric structures for post-Newtonian expansions

In order to perform a Newtonian limit and to analyse the behaviour of physical
systems and theories near this Newtonian limit – that is, to perform a post-Newtonian
expansion – we also need some means of decomposing spacetime into ‘space’ and
‘time’. The general idea is that such a decomposition of the background spacetime can
be accomplished by considering a ‘time evolution’ vector field, i.e. a vector field that
is, with respect to the background metric, timelike, of constant Lorentzian length, and
hypersurface orthogonal. We can then consider the integral curves of this vector field
as ‘time’, and the leaves of the orthogonal distribution as ‘space’.

Since we want the geodesic structure of the background spacetime, and its de-
composition into space and time, to be compatible with Newtonian concepts, we will
take as the background spacetime four-dimensional Minkowski spacetime (M, η) and
as ‘time evolution’ vector field a timelike geodesic vector field u on (M, η). Here η

denotes the Minkowski metric. For reasons of physical dimensionality, we assume u
to have Minkowski square η(u, u) = −c2. We also fix, once and for all, an orientation
and a time orientation on Minkowski spacetime, and assume u to be future-directed.
Sometimes, we will interpret u as the four-velocity vector field of a family of inertial
observers in background Minkowski spacetime.

That the gravitational field be weak now means that the physical spacetime metric on
M, which we denote by g, deviate only little from the background Minkowski metric
η. The notion of ‘deviating only little’ will be made more precise in the following
section. As described above, we now use η and the preferred timelike vector field
u to decompose spacetime into time (integral curves of u) and space (hyperplanes
η-orthogonal to u). We endow ‘space’ with a flat Riemannian metric δ, the restriction
of η to the hyperplanes, such that it just becomes ordinary flat Euclidean space.
Interpreted as a tensor on four-dimensional spacetime (which annihilates the time
direction u and may therefore also be viewed as a purely ‘spatial’ object), δ can be
expressed in geometric, coordinate-free language as

δ := η + c−2 u[ ⊗ u[ , (2.2.1)

where u[ := η(u, ·) denotes the one-form corresponding to u via the metric. The time
evolution vector field u also allows us to define a notion of small / ‘slow’ velocities –
namely spatial velocities, as seen from an observer moving along u, being small
compared to c.

We are free to use the ‘flat’ structure of spacetime and space introduced by the
background structures to perform all our computations. However, once results are
established, we have to keep in mind that physical distances and times are measured
with the physical metric g, not the auxiliary metric η. We will see that in some cases
it is precisely such a re-interpretation in terms of the physical metric that lends the
results good physical meaning.
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2.3. Further geometric notation and conventions

For later use, we introduce the ‘physical spatial metric’ (3)g, which is the restriction
of the physical spacetime metric g to three-dimensional ‘space’, i.e. to the orthogonal
complement of the preferred vector field u. The inverse of this physical spatial metric
will be denoted by (3)g−1.

Let us stress here that all the structures introduced and all the conditions of ‘weakness’
and ‘slowness’ mentioned are entirely independent of coordinates that we may choose.
That is not to say that there may not be preferred coordinates which are particularly
adapted to the given background structure. Indeed, such adapted coordinates obviously
exist, namely positively oriented inertial coordinates (x0, x1, x2, x3) in Minkowski space-
time (M, η), with respect to some arbitrarily chosen origin, such that x0 = ct, u = ∂/∂t,
and η = ηµν dxµ ⊗ dxν with (ηµν) = diag(−1, 1, 1, 1). Unless otherwise stated, we will
always work in such coordinates adapted to the background structures when dealing
with post-Newtonian expansions.

2.3. Further geometric notation and conventions

In our calculations, vectors and tensors will be represented by their components with
respect to the chosen coordinate system (xµ) = (ct, xa). We let Greek indices run from 0
to 3 and Latin indices from 1 to 3, and we shall use the Einstein summation convention
for like indices at different levels (one up- and one downstairs). Indices are lowered
and raised by the physical spacetime metric gµν and its inverse gµν, respectively. The
Minkowski metric takes its usual diagonal form, as stated above. The spatial metric δ

induced by the background structures has the usual Euclidean form with components
(δab) = diag(1, 1, 1), and its inverse has components (δab) = diag(1, 1, 1).

We will often employ a ‘three-vector’ notation, where the three-tuple of spatial
components of some geometric object will be denoted by a boldface letter: for example,
v = (v1, v2, v3) is the ‘vector’ of spatial components of some tangent vector v on M,
or A = (A1, A2, A3) the ‘vector’ of spatial components of some one-form A. When
using this notation, a dot between two such ‘vectors’ will denote the component-wise
‘Euclidean scalar product’, i.e.

v ·w := δabvawb =
3

∑
a=1

vawa (2.3.1)

or

v · A := va Aa =
3

∑
a=1

va Aa . (2.3.2)

Note that the latter does not depend on δ in the formula, but nevertheless relies on
the 3 + 1 split induced by the background structures. Similarly, a cross multiplication
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2. Geometric structures for post-Newtonian expansions

symbol will denote the component-wise vector product, i.e.

(v×w)a := δan (3)εnbcvbwc (2.3.3)

where (3)εabc is the usual three-dimensional totally antisymmetric symbol. Geometric-
ally, (3)εabc can be understood as the components of the spatial volume form induced
by the Euclidean metric δ. We will lower and raise the indices of (3)ε by δab and δab

respectively, i.e. (3)εa
bc := δan (3)εnbc etc., such that we can write (v×w)a = (3)εa

bcvbwc.
A boldface nabla symbol ∇ denotes the three-tuple of partial derivatives

∇ = (∂1, ∂2, ∂3), (2.3.4)

which can be geometrically understood as the component representation of the spatial
covariant derivatives with respect to the flat Euclidean metric. It will be used to
express component-wise vector calculus operations in the usual short-hand notation,
for example writing

(∇× A)a = (3)εabc∂b Ac (2.3.5)

for the component-wise curl of A.
In view of the structures introduced, we stress again that all the operations reported

here and used in the sequel make good geometric sense. They do depend on the
geometric structures that we made explicit above, i.e. on the background metric η and
the time evolution vector field u, but they do not depend on the coordinates or frames
that one uses in order to express the geometric objects (including the background
structures) in terms of their real-valued components.

2.4. Formal expansions in c−1

In order to perform a post-Newtonian expansion, we need some means to keep track of
‘how far away’ from the Newtonian limit some term in a calculation is. A convenient
way for doing so is to expand all relevant quantities as formal power series in c−1,
i.e. in the inverse of the velocity of light. A term of order c0 then corresponds to the
Newtonian limit of the considered quantity, and the higher-order terms give higher
and higher orders of post-Newtonian ‘corrections’. Even though it might at first sight
seem somewhat peculiar to perform an expansion in a dimensionful quantity, there
is nothing to worry about when using this as a method to just formally keep track of
post-Newtonian effects, since no questions of convergence ever arise. Note that the
Newtonian limit of a quantity corresponds to formally taking the limit c→ ∞ in the
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2.4. Formal expansions in c−1

power series. A quantity X being of order (at least) k in the formal c−1-expansion will
be denoted by

X = O(c−k). (2.4.1)

Let us again stress that this does not entail any analytic statement at all; it is just
a notation for orders in formal power series. To put it differently, we view a post-
Newtonian theory as a (formal) deformation of its ‘Newtonian limit’, implementing
the deformation of Galilei to Poincaré symmetry well-known at the level of Lie
algebras [İW53].

Sometimes, we will need to consider quantities incorporating terms of negative order
in c−1 (i.e. of positive order in c). However, we will always encounter but finitely many3

negative-order terms, meaning that we are considering formal Laurent series in the
expansion parameter c−1. Note that no Newtonian limit exists for a quantity with
non-vanishing such negative-order terms.

In the Newtonian limit, coordinate time4 t shall be identified with Newtonian absolute
time. Therefore, we have to treat t as being of order c0 in our formal expansion, instead
of the timelike coordinate x0 = ct with dimension of length: were we to take x0 to
be of order c0, then t = c−1x0 would vanish in the Newtonian limit. However, to
the spatial coordinates (xa) we assign order c0. This necessity of treating the time
direction differently is, of course, well-known: it arises whenever one wants to obtain
well-defined Newtonian limits of (locally) Poincaré-relativistic theories, for example in
the context of Newton–Cartan theory [Ehl81; Ehl19].

Considering the background Minkowski metric

η = ηµν dxµ ⊗ dxν = −c2dt2 + dx2, (2.4.2)

we see that, due to our treating differently the time coordinate, it consists of terms of
different order in c−1: a temporal part of order c2, and a spatial part of order c0. This
analogously goes for the inverse Minkowski metric

η−1 = −c−2 ∂

∂t
⊗ ∂

∂t
+ δab ∂

∂xa ⊗
∂

∂xb . (2.4.3)

We now turn to the description of the formal c−1-expansion of the physical spacetime
metric g, which is to make precise the notion of g deviating only little from the
Minkowski background η. For the computations in chapter 3, it turns out that it is
notationally easiest to label the coefficients in the expansion of the components of the

3In fact, only up to order c4.
4Even though we call it ‘coordinate time’ here, t can of course be characterised in a coordinate-free way

as the evolution parameter of integral curves of the background time evolution vector field u.
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2. Geometric structures for post-Newtonian expansions

inverse metric, instead of the metric itself: we expand the components of the inverse
metric as formal power series

gµν = ηµν +
∞

∑
k=1

c−kgµν

(k) , (2.4.4)

the lowest-order term being given by the components of the inverse Minkowski metric.
Note that the coefficients in (2.4.4) refer to the coordinates (xµ) = (ct, xa). Thus, when
considering the inverse metric proper (and not its components), we obtain

g−1 = gµν ∂

∂xµ
⊗ ∂

∂xν

= η−1 +
∞

∑
k=1

c−k
[

c−2g00
(k)

∂

∂t
⊗ ∂

∂t
+ c−1g0a

(k)
∂

∂t
∨ ∂

∂xa + gab
(k)

∂

∂xa ⊗
∂

∂xb

]
: (2.4.5)

Coefficients carrying the same notational order label ‘(k)’ appear in different orders
of the formal expansion of the proper geometric object g−1. For the sake of notational
convenience, we also define

g−1
(k) := gµν

(k)
∂

∂xµ
⊗ ∂

∂xν
, (2.4.6)

to which the same observation applies.
In chapter 4, we will discuss electromagnetic quantities. In that context, we will treat

the electromagnetic four-potential form A and the four-current density j as being of
formal expansion order c0 when considered as tensor (density) fields. Their components
with respect to our adapted coordinate system are then of the orders

A0 = O(c−1), Aa = O(c0), j0 = O(c1), ja = O(c0), (2.4.7)

factors of c arising in them from x0 = ct involving a factor of c. This implies that the
electric potential φel. = −cA0 and the charge density ρ = 1

c j0 are again quantities5 of
order c0. In particular, for the (non-vanishing) components of the electromagnetic field
tensor F = dA, we have Fa0 = O(c−1) and Fab = O(c0).

To ensure consistency in the treatment of expansion orders when dealing with
electromagnetism, we will write equations in terms of the vacuum permittivity ε0

only, to which we assign the formal order ε0 = O(c0), and avoid usage of the vacuum
permeability µ0 = 1/(ε0c2) altogether.

5In fact, they are – apart from the conventional minus sign in φel. – simply the t components of the fields
with respect to the coordinates (t, xa).
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2.5. The Eddington–Robertson parametrised post-Newtonian metric

2.5. The Eddington–Robertson parametrised post-Newtonian
metric

One of the easiest and most important physically relevant post-Newtonian metrics is
the Eddington–Robertson parametrised post-Newtonian metric, whose components are
given by

(gµν) =

(
−1− 2 φ

c2 − 2β
φ2

c4 + O(c−6) O(c−5)

O(c−5) (1− 2γ
φ
c2 )1 + O(c−4)

)
, (2.5.1)

where φ is a scalar function on spacetime that may be seen as the analogue of the
Newtonian gravitational potential in this approximation scheme.

The metric also contains two dimensionless parameters β and γ, the so-called
‘Eddington–Robertson parameters’. These account for possible deviations from general
relativity, which corresponds to the values β = γ = 1. In that case, the metric (2.5.1)
solves the Einstein field equations of general relativity approximately in a c−1-expansion
for a static source, with φ being the Newtonian gravitational potential of the source. The
metrics for different values of these parameters are then considered to correspond to
so-called ‘test theories’ against which the predictions of general relativity can be tested.

In fact, the Eddington–Robertson PPN metric (PPN = ‘parametrised post-Newtonian’)
is just the simplest of a much bigger family of PPN metrics, encompassing a large range
of lowest-order post-Newtonian effects of metric theories of gravity and thus offering a
large set of theories to test general relativity against. For an extensive discussion of the
parametrised post-Newtonian formalism and its applications in tests of gravitational
theory, we recommend the monograph [Wil93].

The explicit inclusion of β and γ allows us to track the consequences of post-
Newtonian corrections in the spatial and the temporal part of the metric separately.
It also opens the possibility to apply our results to potential future quantum tests of
general relativity itself, which are, however, outside the scope of this thesis.

Note that even though in its true post-Newtonian origin the function φ appearing
in the Eddington–Robertson PPN metric is time-independent, we will allow for it to
depend on time for the sake of higher generality.

The components of the inverse metric to g are easily obtained as

(gµν) =

(
−1 + 2 φ

c2 + (2β− 4) φ2

c4 + O(c−6) O(c−5)

O(c−5) (1 + 2γ
φ
c2 )1 + O(c−4)

)
. (2.5.2)

13





3. Post-Newtonian corrections to
Schrödinger equations in
gravitational fields

In this chapter, we deal with systematic methods to couple single, free quantum
particles to post-Newtonian gravitational fields. More specifically, we extend a WKB-like
post-Newtonian expansion of the minimally coupled Klein–Gordon equation after
Kiefer and Singh [KS91], Lämmerzahl [Läm95], and Giulini and Großardt [GG12] to
arbitrary order in c−1, leading to Schrödinger equations describing a free quantum
particle in a general gravitational field in post-Newtonian expansion. We will compare
the results of this approach to canonical quantisation of a free particle in curved
spacetime, following Wajima et al. [WKF97].

Furthermore, using a more ‘formal’, operator-algebraic approach, expansions of the
Klein–Gordon equation and the canonical quantisation method are shown to lead to
the same results for terms in the Hamiltonian up to linear order in particle momentum,
when the particle is described with respect to a stationary time evolution vector field
in a stationary spacetime. For this, no expansion in the inverse of the velocity of light
has to be employed. This result means in particular that the lowest-order coupling to
gravitomagnetism is described in the same way by both methods.

The material in this chapter has been published in [SG19a].

3.1. Introduction

In the existing literature, one finds two different main approaches to the problem of post-
Newtonian ‘correction terms’ for the Schrödinger equation describing a free quantum
particle in a curved spacetime. The first, described, e.g., by Wajima et al. [WKF97],
starts from a classical description of the particle and applies canonical quantisation
rules adapted to the situation (in a somewhat ad hoc fashion) to derive a quantum-
mechanical Hamiltonian. By an expansion in powers of c−1 (at the stage of the classical
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Hamiltonian), one finds the desired correction terms. Other intimately related methods
use path integral quantisation on the classical system, as, e.g., the semi-classical
calculation by Dimopoulos et al. [Dim+08]. As discussed in the introduction, such
a semi-classical path integral perspective is the most widely used method for the
description of gravitational coupling in quantum optics.

The second, fundamentally different approach takes a field-theoretic perspective and
derives the Schrödinger equation as an equation for the positive frequency solutions
of the minimally coupled classical Klein–Gordon equation. This is accomplished by
Kiefer and Singh [KS91], Lämmerzahl [Läm95], and Giulini and Großardt [GG12] by
making a WKB-like ansatz for the Klein–Gordon field, thereby formally expanding the
Klein–Gordon equation in powers of c−1, in the end viewing the Klein–Gordon theory
as a formal deformation of the Schrödinger theory, as explained before in section 2.4.
This second method seems to be more firmly rooted in first principles than the canonical
quantisation method, since it can at least heuristically be motivated from quantum field
theory in curved spacetimes (see section 3.3). In a similar vein, one can apply such
expansion methods to the Dirac equation, leading to a proper treatment of fermionic
particles.

Although the two methods for obtaining post-Newtonian Schrödinger equations
described above are very different in spirit, they lead to comparable results in lowest
orders. To make possible a general comparison beyond the explicit examples considered
in the existing literature1, we will apply the methods to as general a metric as possible.
In section 3.2, we will give a brief overview over the canonical quantisation method
(and extend it to the case of time-dependent metrics). After a heuristic quantum-
field-theoretic motivation for considering the classical Klein–Gordon equation in the
description of single quantum particles in section 3.3, section 3.4 will develop the
WKB-like formal expansion of the Klein–Gordon equation to arbitrary order in c−1 in a
general metric given as a formal power series in c−1, significantly extending existing
explicit examples to the general case. This leads to some simple comparisons of the
resulting Hamiltonian with the one coming from canonical quantisation.

In section 3.5, we consider a formal expansion of the Klein–Gordon equation in
powers of momentum operators leading to a Schrödinger form of the equation. This
yields a general statement about agreement between the canonical and the Klein–
Gordon methods for terms in the Hamiltonian up to linear order in momentum in the
case of a stationary spacetime, without any necessity of an expansion in powers of c−1.

A similar general WKB-like post-Newtonian formal expansion of the Klein–Gordon
equation to obtain a Schrödinger equation was already considered by Tagirov in [Tag90]

1Wajima et al. [WKF97] considered a first-order post-Newtonian metric for a point-like rotating source,
Lämmerzahl [Läm95] used the first-order Eddington–Robertson PPN metric.
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3.2. Canonical quantisation of a free particle

and a series of follow-up papers [Tag92; Tag96], as summarised in [Tag99]; but unlike
our approach, these works did not expand the metric, thus not allowing to directly
apply the results to metrics given as a power series in c−1. Tagirov also compared his
WKB-like approach to methods of canonical quantisation [Tag03], but did this only for
the case of static metrics.

Since we are concerned mostly with conceptual questions, we will generally not be
mathematically very rigorous in this chapter, and in particular not mention domains of
definition of operators.

3.2. Canonical quantisation of a free particle

In the following, we will describe the canonical quantisation approach that was used
by Wajima et al. [WKF97] to derive a Hamiltonian for a quantum particle in the post-
Newtonian gravitational field of a point-like rotating source. We will allow metrics as
general as possible, and focus on the conceptual issues of the procedure when adapted
to our geometric framework from chapter 2. We will also extend the procedure such
that we are able to define a quantum theory in the case of a time-dependent metric.

The classical action for a ‘relativistic’ point particle of mass m in curved spacetime
with metric g is

S = −mc
∫

dλ
√
−g(x′(λ), x′(λ)) = −mc

∫
dλ
√
−gµνx′µx′ν , (3.2.1)

where x(λ) is the arbitrarily parametrised worldline of the particle. Parametrising
the worldline by coordinate time t = x0/c, i.e. ‘background time’ measured along the
background time evolution vector field u as introduced in section 2.2, the classical
Hamiltonian for t-evolution can be computed to be

H =
1√
−g00

c
[

m2c2 +

(
gab − 1

g00 g0ag0b
)

pa pb

]1/2

+
c

g00 g0a pa (3.2.2)

when expressed in terms of the components of the (inverse) spacetime metric, where
pa are the momenta conjugate to xa. Full details of this calculation can be found in
appendix A.

Note that this Hamiltonian formalism makes use of the decomposition of spacetime
into space and time as induced by the background structures. In the following, we will
denote the spacelike leaf of ‘space’ at background time t, as given by the background
structures, by Σt ⊂ M. The ‘spaces’ corresponding to different values of t may naturally
be identified along the flow of the background time evolution vector field, which
in our adapted coordinates is just given by identifying points with the same spatial
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

coordinates, i.e. (ct1, xa) 7→ (ct2, xa). The quotient space, which may be viewed as
‘abstract’ Euclidean three-space proper, will be denoted by Σ, and there is a natural
embedding Σ

∼=→ Σt ⊂ M for each t. Of course, all of this depends on the background
structures, and thus will the quantum theory we are about to construct2.

Now, we want to ‘canonically quantise’ the classical Hamiltonian (3.2.2). To this end,
we expand the square root in (3.2.2) to the desired order in c−1 (or in momenta, see
section 3.5), and afterwards replace the classical momentum and position variables by
corresponding operators, satisfying the canonical commutation relations. Of course, for
doing so we have to choose an operator ordering scheme for symmetrising products
of momenta and (functions of) position. We thus obtain a quantised Hamiltonian Ĥ,
acting on the Hilbert space on which the position and momentum operators are defined,
and can postulate a Schrödinger equation in the usual form

ih̄∂tψ = Ĥψ. (3.2.3)

Let us stress once more that this Hamiltonian will depend not only on the background
structures η, u which define the post-Newtonian approximation, but also on the choice
of operator ordering scheme, which we leave open in order to keep the discussion as
general as possible.

Note that, according to the Stone–von Neumann theorem, the Hilbert space on
which the position and momentum operators act and the form they take are essentially
uniquely determined (up to unitary equivalence) by demanding the canonical com-
mutation relations3. Thus, the quantum theory is completely specified by the choice
of ordering scheme, without any further choice concerning a possible explicit form
of the Hilbert space. Nevertheless, we will now discuss explicit realisations of the
Hilbert space and the position and momentum operators, in order to gain a more direct
geometric interpretation thereof. This will also become important when comparing
canonical quantisation to formal expansions of the Klein–Gordon equation in the
following sections.

2In fact, the constructions of this section can also be applied in a slightly different setting. We could
assume the spacetime to be globally hyperbolic and perform a 3 + 1 decomposition [Giu14]: we
foliate spacetime M into three-dimensional spacelike Cauchy surfaces Σt which are images of an
‘abstract’ Cauchy surface Σ under a family of embeddings Et : Σ → M, parametrised by a ‘foliation
parameter’ t ∈ R, and introduce spacetime coordinates such that xa are coordinates on Σ and x0 = ct.
In this setting, the embeddings Et defining the 3 + 1 decomposition would constitute the ‘background
structure’ on which the quantum theory will depend.

3Of course, as is well-known, the uniqueness statement is, due to the unboundedness of the operators,
only strictly true when considering the ‘exponentiated’ version of the canonical commutation relations,
i.e. the Weyl relations. This essentially amounts to a regularity condition, which we shall also implicitly
assume on physical grounds.
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3.2. Canonical quantisation of a free particle

Since the position variables in the classical Hamiltonian (3.2.2) are the spatial
coordinates xa on three-dimensional ‘space’, we want the quantum position operators
to directly correspond to these. That is, we want to define the Hilbert space as some
space of square-integrable ‘wavefunctions’ of the xa, such that we can take as position
operators simply the operators of multiplication with the coordinates, thus obtaining a
direct interpretation of the ‘wavefunctions’ in the Hilbert space as ‘position probability
amplitude distributions’. The question of explicit realisation of the Hilbert space thus
becomes a question of choice of a scalar product on (some subspace of) the space of
functions of the xa.

To be more precise, we do not just need a single Hilbert space: to any time t we want
to associate a wavefunction ψ(t) giving rise to a position probability distribution on
the spatial leaf Σt corresponding to t, so we need to consider an individual Hilbert space
for each spatial leaf. But since we want to relate these wavefunctions by a Schrödinger
equation, we have to somehow identify the Hilbert spaces corresponding to different
times.

A natural, geometric choice of scalar product on the space of functions on Σt is the
L2-scalar product with respect to the induced metric measure (compare [WKF97]), i.e.

〈ψ, ϕ〉Σt :=
∫

d3x ψϕ
√

(3)g|Σt , (3.2.4)

where here and in the following, we use the short-hand notation (3)g = det(gab) for the
determinant of the matrix of coordinate components of the spatial metric, when no
confusion with the spatial metric (3)g proper can arise. Consider first the case that the
spatial metric components gab be independent of t, i.e. that the induced geometry be
‘the same’ for all spatial leaves (implicitly identifying each Σt with ‘abstract space’ Σ
via the natural embedding Σ

∼=→ Σt). Then the scalar product (3.2.4) is independent of t,
such that the Hilbert spaces corresponding to the different spatial slices are canonically
identified by simply identifying the wavefunctions (again identifying Σt ∼= Σ). We can
then define the momentum operator as

p̂a := −ih̄ (3)g−1/4 ∂a(
(3)g1/4·), (3.2.5)

which is symmetric with respect to the scalar product and fulfils the canonical com-
mutation relation [xa, p̂b] = ih̄δa

b , and carry out canonical quantisation as described
above.

If we allow for the gab to depend on t, the scalar product (3.2.4) depends on t
and thus the canonical map L2(Σ, 〈·, ·〉Σt) 3 ψ 7→ ψ ∈ L2(Σ, 〈·, ·〉Σs) no longer is an
isomorphism of Hilbert spaces. I.e. the natural identification from above does not
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

work, spoiling the program of canonical quantisation with this concrete realisation /
geometric interpretation of the Hilbert spaces. A natural solution to this problem is to
instead consider the time-independent ‘flat’ L2-scalar product

〈ψf, ϕf〉f :=
∫

d3x ψf ϕf (3.2.6)

together with the ‘flat’ momentum operator p̄a := −ih̄∂a. Using these, we obtain a
‘geometric realisation’ of our canonical quantisation Hilbert space also in the case of
time-dependent gab. At first sight, this scalar product could seem less ‘geometric’ than
(3.2.4), but it can be seen to have as much invariant meaning as the latter by realising
that, geometrically speaking, the ‘flat’ wavefunctions ψf, ϕf be scalar densities (of weight
1/2) on Σ instead of scalar functions. Since this choice of ‘flat’ scalar product can be
applied to more general situations, and it eases the comparison to usual Galilei-invariant
Schrödinger theory and to the Klein–Gordon expansion methods to be discussed in
the following, we will adopt it from now on, i.e. ‘canonically quantise’ the expanded
classical Hamiltonian by replacing the classical momentum by the flat momentum
operator (applying our chosen ordering scheme).

As explained above, the two choices of explicit realisation of the Hilbert space that
we described for the case of time-independent gab have to be unitarily equivalent by
the Stone–von Neumann theorem. The unitary operator implementing this equivalence
can be directly read off from the definitions of the two scalar products, and is given by
ψ 7→ ψf =

(3)g1/4 ψ.

3.3. Formal expansions of the Klein–Gordon equation:
heuristic motivation from quantum field theory
in stationary spacetimes

In the following, we will consider formal expansions of the classical, minimally coupled
Klein–Gordon equation for a particle of mass m > 0,(

�− m2c2

h̄2

)
ΨKG = 0, (3.3.1)

leading to a Schrödinger equation with post-Newtonian corrections. In section 3.4,
we shall deal with a WKB-inspired formal expansion in c−1, while in section 3.5, we
will draw a comparison to canonical quantisation based on an expansion in spatial
momentum. To lay a conceptual foundation for these investigations, we will in this
section give a heuristic motivation for consideration of the classical Klein–Gordon
equation from quantum field theory in curved spacetimes.
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Instead of (3.3.1) one could also consider the more general case of a possibly non-
minimally coupled Klein–Gordon equation, i.e. including some curvature term. This is
customary in modern literature on quantum field theory in curved spacetime, where
an additional term −ξRΨKG is included in the equation, R being the scalar curvature
of the spacetime [BF09, eq. (5.57)]. In particular, for the choice of ξ = 1

6 (‘conformal
coupling’), the equation becomes conformally invariant in the massless case m = 0, and
also in the massive case there are some arguments favouring the conformally coupled
Klein–Gordon equation, in particular in de Sitter spacetime [Tag73]. Nevertheless, we
will for the sake of simplicity stick with the minimally coupled equation in this thesis,
leaving non-minimal coupling for possible later investigations.

Now, we turn to the advertised motivation of consideration of the classical Klein–
Gordon equation on a heuristic level. Namely, the quantum field theory construction
for the free Klein–Gordon field on a globally hyperbolic stationary spacetime proceeds
as follows (see, e.g., [Wal94, section 4.3]).

We consider the Klein–Gordon equation (3.3.1) on a general globally hyperbolic
stationary spacetime, and the Klein–Gordon inner product, which for two solutions
ΨKG, ΦKG of (3.3.1) is given by

〈ΨKG, ΦKG〉KG = ih̄c
∫

Σ
d3x

√
(3)g nν

[
ΨKG

(
∇νΦKG

)
−
(
∇νΨKG

)
ΦKG

]
= ih̄c

∫
Σ

d3x
√

(3)g nν
[
ΨKG

(
∂νΦKG

)
−
(
∂νΨKG

)
ΦKG

]
, (3.3.2)

where Σ is a spacelike Cauchy surface, (3)g is the determinant of the induced metric on
Σ, and n is the future-directed unit normal vector field of Σ. In the second line, which
is valid in a coordinate basis, we used that the covariant derivative of a scalar function
is just the ordinary exterior derivative, i.e. given by a partial derivative in the case of a
coordinate basis. Using the Klein–Gordon equation and Gauß’ theorem, (3.3.2) can be
shown to be independent of the choice of Σ under the assumption that the fields satisfy
suitable boundary conditions.

The Hilbert space of the quantum field theory is now the bosonic Fock space over
the ‘one-particle’ Hilbert space constructed, loosely speaking, as the completion of
the space of classical solutions of the Klein–Gordon equation with ‘positive frequency’
(with respect to the stationarity Killing field) with the Klein–Gordon inner product.

To be more precise, the construction of the ‘one-particle’ Hilbert space is a little more
involved, since it is not a priori clear what is meant by ‘positive frequency solutions’: at
first, the space of classical solutions of the Klein–Gordon equation is completed in a
certain inner product to obtain an ‘intermediate’ Hilbert space on which the generator
of time translations (with respect to the stationarity Killing field) can be shown to be a
self-adjoint operator; the positive spectral subspace of this operator is then completed
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

in the Klein–Gordon inner product to give the Hilbert space of one-particle states. For
details on the construction, see [Wal94, section 4.3] and the references cited therein.

So the one-particle sector of the free Klein–Gordon quantum field theory in globally
hyperbolic stationary spacetime is described by an appropriate notion of positive
frequency solutions of the classical Klein–Gordon equation, using the Klein–Gordon in-
ner product. Note that in this representation, in which the Klein–Gordon inner product
takes its usual form, the ‘naive position operator’ (multiplying with coordinate posi-
tion) is the well-known Newton–Wigner position when we are considering Minkowski
spacetime.

At this point, the quantum-field-theoretic motivation of our Klein–Gordon expansion
methods becomes merely heuristic: since in the following we will not solve the Klein–
Gordon equation exactly, but consider formal expansions of it (either in powers of
c−1 or in powers of spatial momentum), it will not be possible to exactly determine
the space of positive frequency solutions according to the procedure described above;
instead, we will merely choose an oscillating phase factor such as to guarantee the
solution to have positive instead of negative frequency in lowest order in the expansion
(see (3.4.20)). If analysed more rigorously, it could turn out that for an asymptotic
solution to be of positive frequency in some stricter sense, additional restrictions on
the solution have to be made, possibly altering the function space under consideration.
I.e. in principle, this could lead to the Hamiltonian we will obtain being altered when
considering a rigorous analytic post-Newtonian expansion of quantum field theory in
curved spacetime, instead of just a formal power series expansion.

In the non-stationary case, there is no canonical notion of particles and thus, strictly
speaking, the whole question about the behaviour of single quantum particles does not
make sense. Nevertheless, for an observer moving on an orbit which is approximately
Killing, the classical Klein–Gordon theory can, on a heuristic level, still be expected to
lead to approximately correct predictions regarding this observer’s observations.

Even if this motivation is just a heuristic, the WKB-like approach of expanding the
Klein–Gordon equation in powers of c−1 will allow us to view the classical Klein–
Gordon theory as a formal deformation of the ‘non-relativistic’ Schrödinger theory, and
makes the sense in which that happens formally precise, the same happening for the
momentum expansion.

3.4. WKB-like expansion of the Klein–Gordon equation

Now, we will consider WKB-like formal expansions in c−1 of the Klein–Gordon equation
(3.3.1), as first introduced by Kiefer and Singh in [KS91] for Minkowski spacetime,
and later considered by Lämmerzahl in [Läm95] for the simple Eddington–Robertson
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3.4. WKB-like expansion of the Klein–Gordon equation

PPN metric, and by Giulini and Großardt in [GG12] for general spherically symmetric
metrics.

After developing the expansion of the Klein–Gordon equation to arbitrary order in
c−1, we will explain the transformation to a ‘flat’ L2-scalar product for comparison to
canonical quantisation, and finally consider the metric of the Eddington–Robertson PPN

test theory as a simple explicit example.

3.4.1. General derivation

We assume the post-Newtonian physical spacetime metric to be given by a formal
power series in c−1 as in (2.4.4). Let us remind ourselves that we will work in our
coordinate system that is adapted to the background structures defining the notion of
post-Newtonian expansion.

In coordinates, the d’Alembert operator in a general Lorentzian metric, as acting on
scalar functions, is given by

� f = ∇µ∇µ f

=
1√−g

∂µ(
√
−g gµν∂ν f )

=
1√−g

(∂µ

√
−g)gµν∂ν f + ∂µ(gµν)∂ν f + gµν∂µ∂ν f , (3.4.1)

where we use the short-hand notation g = det(gµν) for the determinant of the matrix
of coordinate components of the metric, when no confusion with the metric proper
can arise. The second and third term in this expression can easily be expanded in c−1

by inserting the expansion (2.4.4) of the components of the inverse metric and using
x0 = ct: the third term is

gµν∂µ∂ν = −c−2∂2
t + ∆ +

∞

∑
k=1

c−kg00
(k)c
−2∂2

t +
∞

∑
k=1

c−k2g0a
(k)c
−1∂t∂a +

∞

∑
k=1

c−kgab
(k)∂a∂b

= −c−2∂2
t + ∆ +

∞

∑
k=3

c−kg00
(k−2)∂

2
t +

∞

∑
k=2

c−k2g0a
(k−1)∂t∂a +

∞

∑
k=1

c−kgab
(k)∂a∂b , (3.4.2)

where ∆ = δab∂a∂b denotes the ‘flat’ Euclidean Laplacian on three-dimensional space,
as induced by the background structures. Similarly, the second term evaluates to

(∂µgµν)∂ν =
∞

∑
k=3

c−k(∂tg00
(k−2))∂t +

∞

∑
k=2

c−k(∂tg0a
(k−1))∂a

+
∞

∑
k=2

c−k(∂ag0a
(k−1))∂t +

∞

∑
k=1

c−k(∂agab
(k))∂b . (3.4.3)
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Since the remaining first term of (3.4.1) involves the expression

1√−g
∂µ

√
−g =

1
2g

∂µg =
1
2

gρσ∂µgρσ = −1
2

gρσ∂µgρσ, (3.4.4)

we need an expression for the c−1-expansion of the components of the metric, not just
the inverse metric. Rewriting the expansion of the inverse metric as

gµν =

[(
1 +

∞

∑
k=1

c−kg−1
(k)η

)
η−1

]µν

, (3.4.5)

where we used the objects g−1
(k) introduced in (2.4.6), we see that a formal Neumann

series can be used to invert the power series. This gives the coefficients of the metric as

gµν =

{
η

[
1 +

∞

∑
n=1

(
−

∞

∑
k=1

c−kg−1
(k)η

)n]}
µν

. (3.4.6)

Iterating the Cauchy product formula, we have(
−

∞

∑
k=1

c−kg−1
(k)η

)n

= (−1)n
∞

∑
k=1

c−k ∑
i1+···+in=k
1≤i1,...,in≤k

g−1
(i1)

η · · · g−1
(in)

η. (3.4.7)

Using this and introducing the notation

g−1
(k,n) := ∑

i1+···+in=k
1≤i1,...,in≤k

g−1
(i1)

ηg−1
(i2)

η · · · g−1
(in)

, (3.4.8)

we can write the metric as

gµν = ηµν +
∞

∑
k=1

c−k
∞

∑
n=1

(−1)n(ηg−1
(k,n)η)µν . (3.4.9)

Thus, returning to (3.4.4) we obtain, using the Cauchy product formula again,

gρσ∂µgρσ =

(
ηρσ +

∞

∑
k=1

c−k
∞

∑
n=1

(−1)n(ηg−1
(k,n)η)ρσ

)
∞

∑
m=1

c−m∂µgρσ

(m)

=
∞

∑
k=1

c−k∂µ tr(ηg−1
(k)) +

∞

∑
k=2

c−k ∑
l+m=k

∞

∑
n=1

(−1)n(ηg−1
(l,n)η)ρσ ∂µgρσ

(m)
, (3.4.10)
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3.4. WKB-like expansion of the Klein–Gordon equation

where in the sum ∑l+m=k , the summation variables l and m take values ≥ 1, which we
notationally suppress here and in the following. Using

∑
l+m=k

(ηg−1
(l,n)η)ρσ ∂µgρσ

(m)
= ∑

l+m=k
∑

i1+···+in=l
(ηg−1

(i1)
· · · g−1

(in)
η)ρσ ∂µgρσ

(m)

= ∑
i1+···+in+m=k

tr(ηg−1
(i1)
· · · g−1

(in)
η ∂µg−1

(m)
)

=
1

n + 1
∂µ ∑

i1+···+in+m=k
tr(ηg−1

(i1)
· · · g−1

(in)
ηg−1

(m)
)

=
1

n + 1
∂µ tr(ηg−1

(k,n+1)) (3.4.11)

and the facts that g−1
(k,n) = 0 for n > k and g−1

(k,1) = g−1
(k), we can rewrite this as

gρσ∂µgρσ =
∞

∑
k=1

c−k∂µ tr(ηg−1
(k)) +

∞

∑
k=2

c−k
∞

∑
n=2

(−1)n−1 1
n

∂µ tr(ηg−1
(k,n))

=
∞

∑
k=1

c−k∂µ tr(ηg−1
(k)) +

∞

∑
k=1

c−k
∞

∑
n=2

(−1)n−1 1
n

∂µ tr(ηg−1
(k,n))

=
∞

∑
k=1

c−k
∞

∑
n=1

(−1)n−1 1
n

∂µ tr(ηg−1
(k,n)). (3.4.12)

Thus, we finally obtain the expansion

1√−g
(∂µ

√
−g)gµν∂ν f

= −1
2
(gρσ ∂µgρσ)gµν∂ν f

=
1
2

∞

∑
k=1

c−k
∞

∑
n=1

(−1)n 1
n
[∂µ tr(ηg−1

(k,n))]

(
ηµν +

∞

∑
m=1

c−mgµν

(m)

)
∂ν f

=
1
2

∞

∑
k=1

c−k
∞

∑
n=1

(−1)n 1
n
[∂µ tr(ηg−1

(k,n))] ηµν∂ν f

+
1
2

∞

∑
k=2

c−k ∑
l+m=k

∞

∑
n=1

(−1)n 1
n
[∂µ tr(ηg−1

(l,n))] gµν

(m)
∂ν f (3.4.13)

for the first term in the d’Alembert operator (3.4.1).
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Inserting (3.4.2), (3.4.3), and (3.4.13) into (3.4.1) and sorting the sums by order of c−1,
the full expansion of the d’Alembert operator reads

� f =
1
2

∞

∑
k=4

c−k ∑
l+m=k−2

∞

∑
n=1

(−1)n 1
n

g00
(m)[∂t tr(ηg−1

(l,n))] ∂t f

+
1
2

∞

∑
k=3

c−k ∑
l+m=k−1

∞

∑
n=1

(−1)n 1
n

g0a
(m)

(
[∂t tr(ηg−1

(l,n))] ∂a f + [∂a tr(ηg−1
(l,n))] ∂t f

)
− 1

2

∞

∑
k=3

c−k
∞

∑
n=1

(−1)n 1
n
[∂t tr(ηg−1

(k−2,n))] ∂t f

+
∞

∑
k=3

c−k(∂tg00
(k−2)) ∂t f +

∞

∑
k=3

c−kg00
(k−2)∂

2
t f

+
1
2

∞

∑
k=2

c−k ∑
l+m=k

∞

∑
n=1

(−1)n 1
n

gab
(m)[∂a tr(ηg−1

(l,n))] ∂b f

+
∞

∑
k=2

c−k
(
(∂tg0a

(k−1)) ∂a f + (∂ag0a
(k−1)) ∂t f

)
+

∞

∑
k=2

c−k 2g0a
(k−1)∂t∂a f − c−2∂2

t f

+
1
2

∞

∑
k=1

c−k
∞

∑
n=1

(−1)n 1
n
[∂a tr(ηg−1

(k,n))]δ
ab∂b f

+
∞

∑
k=1

c−k(∂agab
(k))∂b f +

∞

∑
k=1

c−kgab
(k)∂a∂b f + ∆ f . (3.4.14)

Now, we make the WKB-like ansatz

ΨKG = exp
(

ic2

h̄
S
)

ψ, ψ =
∞

∑
k=0

c−kak (3.4.15)

for the Klein–Gordon field (compare [GG12]), where S is a real function; i.e. we separate
off a phase factor and expand the remainder as a power series in c−1. All the functions
S, ak are assumed to be independent of the expansion parameter c−1. The derivatives
of the field are

∂µΨKG =
ic2

h̄
(∂µS)ΨKG + exp(. . .)∂µψ (3.4.16)

and

∂µ∂νΨKG = exp
(

ic2

h̄
S
)(
− c4

h̄2 (∂µS)(∂νS)ψ +
ic2

h̄
[
(∂µ∂νS)ψ

+ (∂µS)∂νψ + (∂νS)∂µψ
]
+ ∂µ∂νψ

)
. (3.4.17)
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3.4. WKB-like expansion of the Klein–Gordon equation

Using these and the expansion (3.4.14) of the d’Alembert operator, we can now
analyse the Klein–Gordon equation (3.3.1) order by order in c−1. At the lowest occurring
order c4, we get

− exp
(

ic2

h̄
S
)

1
h̄2 δab(∂aS)(∂bS)a0 = 0, (3.4.18)

which is equivalent4 to ∂aS = 0. So S is a function of (coordinate) time only. Using this,
the Klein–Gordon equation has no term of order c3.

At c2, we get

exp
(

ic2

h̄
S
)(

1
h̄2 (∂tS)2 − m2

h̄2

)
a0 = 0, (3.4.19)

equivalent to ∂tS = ±m. Since we are interested in positive-frequency solutions of the
Klein–Gordon equation, we choose ∂tS = −m, leading to

S = −mt (3.4.20)

(an additional constant term would lead to an irrelevant global phase).

The c1 coefficient leads to the equation

− exp
(

ic2

h̄
S
)

g00
(1)

m2

h̄2 a0 = 0, (3.4.21)

equivalent to

g00
(1) = 0. (3.4.22)

Thus the requirement that the Klein–Gordon equation have solutions which are formal
power series of the form (3.4.15) imposes restrictions on the components of the metric.
In the following, we will freely use the vanishing of g00

(1).

4For nontrivial solutions, i.e. a0 6= 0.
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Using (3.4.20) and (3.4.22), the positive frequency Klein–Gordon equation for our
WKB-like solutions is equivalent to the following equation for ψ:

0 =
∞

∑
k=5

c−k 1
2 ∑

l+m=k−2

∞

∑
n=1

(−1)n 1
n

g00
(m)[∂t tr(ηg−1

(l,n))] ∂tψ

+
∞

∑
k=4

c−k(∂tg00
(k−2)) ∂tψ +

∞

∑
k=4

c−kg00
(k−2)∂

2
t ψ

−
∞

∑
k=3

c−k im
2h̄ ∑

l+m=k

∞

∑
n=1

(−1)n 1
n

g00
(m)[∂t tr(ηg−1

(l,n))]ψ

+
∞

∑
k=3

c−k 1
2 ∑

l+m=k−1

∞

∑
n=1

(−1)n 1
n

g0a
(m)

(
[∂t tr(ηg−1

(l,n))] ∂aψ + [∂a tr(ηg−1
(l,n))] ∂tψ

)
−

∞

∑
k=3

c−k 1
2

∞

∑
n=1

(−1)n 1
n
[∂t tr(ηg−1

(k−2,n))] ∂tψ

−
∞

∑
k=2

c−k im
h̄
(∂tg00

(k))ψ−
∞

∑
k=2

c−k 2im
h̄

g00
(k)∂tψ

+
∞

∑
k=2

c−k 1
2 ∑

l+m=k

∞

∑
n=1

(−1)n 1
n

gab
(m)[∂a tr(ηg−1

(l,n))] ∂bψ

+
∞

∑
k=2

c−k
(
(∂tg0a

(k−1)) ∂aψ + (∂ag0a
(k−1)) ∂tψ

)
+

∞

∑
k=2

c−k 2g0a
(k−1)∂t∂aψ− c−2∂2

t ψ

−
∞

∑
k=1

c−k im
2h̄ ∑

l+m=k+1

∞

∑
n=1

(−1)n 1
n

g0a
(m)[∂a tr(ηg−1

(l,n))]ψ

+
∞

∑
k=1

c−k im
2h̄

∞

∑
n=1

(−1)n 1
n
[∂t tr(ηg−1

(k,n))]ψ

+
∞

∑
k=1

c−k 1
2

∞

∑
n=1

(−1)n 1
n
[∂a tr(ηg−1

(k,n))]δ
ab∂bψ +

∞

∑
k=1

c−k(∂agab
(k))∂bψ

+
∞

∑
k=1

c−kgab
(k)∂a∂bψ

−
∞

∑
k=0

c−k m2

h̄2 g00
(k+2)ψ−

∞

∑
k=0

c−k im
h̄
(∂ag0a

(k+1))ψ−
∞

∑
k=0

c−k 2im
h̄

g0a
(k+1)∂aψ

+
2im

h̄
∂tψ + ∆ψ (3.4.23)
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Inserting the expansion ψ = ∑∞
k=0 c−kak and using the Cauchy product formula, this

is equivalent to

0 =
∞

∑
k=5

c−k 1
2 ∑

l+m+k̃=k−2

∞

∑
n=1

(−1)n 1
n

g00
(m)[∂t tr(ηg−1

(l,n))] ∂tak̃

+
∞

∑
k=4

c−k ∑
l+k̃=k−2

(∂tg00
(l)) ∂tak̃ +

∞

∑
k=4

c−k ∑
l+k̃=k−2

g00
(l)∂

2
t ak̃

−
∞

∑
k=3

c−k im
2h̄ ∑

l+m+k̃=k

∞

∑
n=1

(−1)n 1
n

g00
(m)[∂t tr(ηg−1

(l,n))]ak̃

+
∞

∑
k=3

c−k 1
2 ∑

l+m+k̃=k−1

∞

∑
n=1

(−1)n 1
n

g0a
(m)

(
[∂t tr(ηg−1

(l,n))] ∂aak̃ + [∂a tr(ηg−1
(l,n))] ∂tak̃

)
−

∞

∑
k=3

c−k 1
2 ∑

l+k̃=k−2

∞

∑
n=1

(−1)n 1
n
[∂t tr(ηg−1

(l,n))] ∂tak̃

−
∞

∑
k=2

c−k im
h̄ ∑

l+k̃=k

(∂tg00
(l))ak̃ −

∞

∑
k=2

c−k 2im
h̄ ∑

l+k̃=k

g00
(l)∂tak̃

+
∞

∑
k=2

c−k 1
2 ∑

l+m+k̃=k

∞

∑
n=1

(−1)n 1
n

gab
(m)[∂a tr(ηg−1

(l,n))] ∂bak̃

+
∞

∑
k=2

c−k ∑
l+k̃=k−1

(
(∂tg0a

(l)) ∂aak̃ + (∂ag0a
(l)) ∂tak̃

)
+

∞

∑
k=2

c−k 2 ∑
l+k̃=k−1

g0a
(l)∂t∂aak̃

−
∞

∑
k=2

c−k∂2
t ak−2 −

∞

∑
k=1

c−k im
2h̄ ∑

l+m+k̃=k+1

∞

∑
n=1

(−1)n 1
n

g0a
(m)[∂a tr(ηg−1

(l,n))]ak̃

+
∞

∑
k=1

c−k im
2h̄ ∑

l+k̃=k

∞

∑
n=1

(−1)n 1
n
[∂t tr(ηg−1

(l,n))]ak̃

+
∞

∑
k=1

c−k 1
2 ∑

l+k̃=k

∞

∑
n=1

(−1)n 1
n
[∂a tr(ηg−1

(l,n))]δ
ab∂bak̃ +

∞

∑
k=1

c−k ∑
l+k̃=k

(∂agab
(l))∂bak̃

+
∞

∑
k=1

c−k ∑
l+k̃=k

gab
(l)∂a∂bak̃ −

∞

∑
k=0

c−k m2

h̄2 ∑
l+k̃=k+2

g00
(l)ak̃

−
∞

∑
k=0

c−k im
h̄ ∑

l+k̃=k+1

(∂ag0a
(l))ak̃ −

∞

∑
k=0

c−k 2im
h̄ ∑

l+k̃=k+1

g0a
(l)∂aak̃

+
∞

∑
k=0

c−k 2im
h̄

∂tak +
∞

∑
k=0

c−k∆ak , (3.4.24)

where in sums like ∑l+m+k̃=k , l and m are ≥ 1 as before, but k̃ is ≥ 0.
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Using the fully expanded (3.4.24), we can obtain equations for the ak, order by order,
which can then be combined into a Schrödinger equation for ψ: at order c0, we have

0 =

(
−m2

h̄2 g00
(2) −

im
h̄
(∂ag0a

(1))−
2im

h̄
g0a
(1)∂a +

2im
h̄

∂t + ∆
)

a0 , (3.4.25)

i.e. the Schrödinger equation

ih̄∂ta0 =

(
− h̄2

2m
∆ +

ih̄
2
(∂ag0a

(1)) + ih̄g0a
(1)∂a +

m
2

g00
(2)

)
a0 . (3.4.26)

By the relation ψ = a0 + O(c−1), this also gives a Schrödinger equation for ψ in 0th

order in c−1.
At order c−1, (3.4.24) yields the following Schrödinger-like equation for a1 with

correction terms involving a0:

ih̄∂ta1 =

(
− h̄2

2m
∆ +

ih̄
2
(∂ag0a

(1)) + ih̄g0a
(1)∂a +

m
2

g00
(2)

)
a1

+

(
− ih̄

4
g0a
(1)[∂a tr(ηg−1

(1))] +
ih̄
4
[∂t tr(ηg−1

(1))] +
h̄2

4m
[∂a tr(ηg−1

(1))]δ
ab∂b

− h̄2

2m
(∂agab

(1))∂b −
h̄2

2m
gab
(1)∂a∂b +

m
2

g00
(3) +

ih̄
2
(∂ag0a

(2)) + ih̄g0a
(2)∂a

)
a0 (3.4.27)

Using ψ = a0 + c−1a1 +O(c−2), we can combine (3.4.27) with (3.4.26) into a Schrödinger
equation for ψ up to order c−1:

ih̄∂tψ =

[
− h̄2

2m
∆ +

ih̄
2
(∂ag0a

(1)) + ih̄g0a
(1)∂a +

m
2

g00
(2) + c−1

(
− ih̄

4
g0a
(1)[∂a tr(ηg−1

(1))]

+
ih̄
4
[∂t tr(ηg−1

(1))] +
h̄2

4m
[∂a tr(ηg−1

(1))]δ
ab∂b −

h̄2

2m
(∂agab

(1))∂b −
h̄2

2m
gab
(1)∂a∂b

+
m
2

g00
(3) +

ih̄
2
(∂ag0a

(2)) + ih̄g0a
(2)∂a

)
+ O(c−2)

]
ψ =: Hψ (3.4.28)

Continuing this process of evaluating (3.4.24), we can, in principle, get Schrödinger
equations for ψ to arbitrary order in c−1, i.e. obtain the Hamiltonian in the Schrödinger
form of the positive frequency Klein–Gordon equation to arbitrary order in c−1.

However, when considering higher orders, a difficulty arises: the Schrödinger-like
equations for ak begin to involve time derivatives of the lower order functions al , so we
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3.4. WKB-like expansion of the Klein–Gordon equation

have to re-use the derived equations for the al in order to get a true Schrödinger equation
for ψ (with a purely ‘spatial’ Hamiltonian, i.e. not involving any time derivatives) – i.e.
the process becomes recursive. As far as concrete calculations up to some finite order
are concerned, this is merely a computational obstacle; but for a general analysis of the
expansion method this poses a bigger problem, since no general closed form can be
easily obtained. This motivated the study of the Klein–Gordon equation as a quadratic
equation for the time derivative operator, leading to the ‘momentum expansion’ method
described in section 3.5.

3.4.2. Transformation to ‘flat’ scalar product and comparison with canonical
quantisation

To transform the Hamiltonian obtained in (3.4.28) from the representation of the Hilbert
space with the Klein–Gordon inner product (3.3.2) to the ‘flat’ scalar product (3.2.6)
in order to compare it to the result from canonical quantisation, we note that for two
positive frequency solutions ΨKG = exp(−imc2t/h̄)ψ and ΦKG = exp(−imc2t/h̄)ϕ, the
Klein–Gordon inner product is given by

〈ΨKG, ΦKG〉KG = ih̄c
∫

d3x
√

(3)g g0ν[(∂νΨKG)ΦKG −ΨKG(∂νΦKG)]
1√
−g00

=
∫

d3x
√

(3)g

(√
−g00

[
2mc2ψϕ + (Hψ)ϕ + ψ(Hϕ)

]
+ ih̄c

g0a√
−g00

[
(∂aψ)ϕ− ψ(∂a ϕ)

] )
, (3.4.29)

where we used our adapted coordinates and chose Σ = {t = const.} in the general
form (3.3.2) of the Klein–Gordon inner product.

Using
√
−g00 = 1 + O(c−2), g0a(−g00)−1/2 = O(c−1), and H = O(c0), we get

1
2mc2 〈ΨKG, ΦKG〉KG =

∫
d3x

√
(3)g [ψϕ + O(c−2)]. (3.4.30)

For this to equal the ‘flat’ scalar product
∫

d3x ψf ϕf, we see that the ‘flat wavefunction’
has to have the form ψf =

(3)g1/4 ψ + O(c−2) and therefore evolves according to the
Schrödinger equation ih̄∂tψf = Hf ψf with the ‘flat Hamiltonian’

Hf = ih̄
(

∂t
(3)g1/4

)
(3)g−1/4 + (3)g1/4 H

(
(3)g−1/4·

)
+ O(c−2). (3.4.31)
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Using5 (3)g1/4 = 1 − c−1 1
4 tr(ηg−1

(1)) + O(c−2) and noting that conjugation with a
multiplication operator leaves multiplication operators invariant, we obtain

Hf = −ih̄c−1 1
4
[∂t tr(ηg−1

(1))] + H − c−1 h̄2

8m
[∆, tr(ηg−1

(1))]

+ c−1 ih̄
4

g0a
(1)[∂a, tr(ηg−1

(1))] + O(c−2)

= −ih̄c−1 1
4
[∂t tr(ηg−1

(1))] + H − c−1 h̄2

8m

(
[∆ tr(ηg−1

(1))] + 2[∂a tr(ηg−1
(1))]δ

ab∂b

)
+ c−1 ih̄

4
g0a
(1)[∂a tr(ηg−1

(1))] + O(c−2)

= − h̄2

2m
∆ +

ih̄
2
(∂ag0a

(1)) + ih̄g0a
(1)∂a +

m
2

g00
(2) + c−1

(
− h̄2

2m
(∂agab

(1)) ∂b −
h̄2

2m
gab
(1)∂a∂b

+
m
2

g00
(3) +

ih̄
2
(∂ag0a

(2)) + ih̄g0a
(2)∂a −

h̄2

8m
[∆ tr(ηg−1

(1))]

)
+ O(c−2)

= − h̄2

2m
∆− 1

2

{
g0a
(1),−ih̄∂a

}
+

m
2

g00
(2) + c−1

(
1

2m
(−ih̄)∂a

(
gab
(1)(−ih̄)∂b ·

)
+

m
2

g00
(3) −

1
2

{
g0a
(2),−ih̄∂a

}
− h̄2

8m
[∆ tr(ηg−1

(1))]

)
+ O(c−2), (3.4.32)

where {A, B} = AB + BA denotes the anticommutator. This is the Hamiltonian
appearing in the ‘flat’ Schrödinger form of the positive frequency Klein–Gordon
equation up to order c−1, obtained by the WKB-like approximation in a general metric.

For comparison of this result with the canonical quantisation scheme, we have
to subtract the rest energy mc2 from the classical Hamiltonian of equation (3.2.2),
corresponding to the phase factor separated off the Klein–Gordon field, and expand it
in c−1, yielding

Hclass =
1√
−g00

c
[

m2c2 +

(
gab − 1

g00 g0ag0b
)

pa pb

]1/2

−mc2 +
c

g00 g0a pa

=
m
2

g00
(2) +

p2

2m
− g0a

(1)pa + c−1
(m

2
g00
(3) + gab

(1)
pa pb

2m
− g0a

(2)pa

)
+ O(c−2). (3.4.33)

5The metric determinant satisfies g−1 = −1− c−1 tr(ηg−1
(1)) + O(c−2). Using the well-known identity

(3)g = g00g for a 3+ 1 decomposed metric, this gives (3)g = g00g = [−1+O(c−2)][−1+ c−1 tr(ηg−1
(1)) +

O(c−2)] = 1− c−1 tr(ηg−1
(1)) + O(c−2).
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3.4. WKB-like expansion of the Klein–Gordon equation

Comparing this with (3.4.32), we see that by ‘canonical quantisation’ of this classical
Hamiltonian using the rule ‘pi → −ih̄∂i’, we can reproduce, using a specific ordering
scheme, all terms appearing in the WKB expansion, apart from − h̄2

8mc [∆ tr(ηg−1
(1))]. For

this last term to arise by naive canonical quantisation, consisting only of symmetrising
according to some ordering scheme and replacing momenta by operators, in the classical
Hamiltonian there would have to be a term proportional to p2

mc tr(ηg−1
(1)) =

p2

mc δabgab
(1),

which is not the case.
As the most simple non-trivial example, for the ‘Newtonian’ metric with line element

ds2 = −
(

1 + 2
φ

c2

)
c2dt2 + dx2 + O(c−2), (3.4.34)

the inverse metric has components

(gµν) =

(
−1 + 2 φ

c2 + O(c−4) O(c−3)

O(c−3) 1 + O(c−2)

)
, (3.4.35)

leading to the quantum Hamiltonian H = − h̄2

2m ∆ + mφ + O(c−2) in both schemes, i.e.
just the standard Hamiltonian with Newtonian potential.

The occurrence of an extra term in a geometrically motivated quantum theory which
one cannot arrive at by naive canonical quantisation is reminiscent of the occurrence
of a ‘quantum-mechanical potential’ term in the Hamiltonian found by DeWitt in his
1952 treatment of quantum motion in a curved space [DeW52]: by demanding the (free
part of the) Hamiltonian to be given by HDeWitt = − h̄2

2m
(3)∆LB in terms of the spatial

Laplace–Beltrami operator (3)∆LB (induced by the physical spatial metric (3)g, not the
background flat one), it turns out to have the form HDeWitt = 1

2m p̂a
(3)gab p̂b + h̄2Q of

a sum of a naively canonically quantised kinetic term6 and the quantum-mechanical
potential7 h̄2Q = h̄2

2m
(3)g−1/4∂a((3)gab∂b

(3)g1/4).

6Note that DeWitt uses the ‘geometric’ scalar product (3.2.4), not the ‘flat’ one.
7Using the form

−h̄2 (3)∆LB = −h̄2 1√
(3)g

∂a

(√
(3)g (3)gab∂b ·

)
= (3)g−1/4 p̂a

(3)g1/2 (3)gab p̂b
(3)g−1/4 (3.4.36)

of the Laplace–Beltrami operator in terms of the momentum operator (3.2.5), it can be expressed as

− h̄2 (3)∆LB = p̂a
(3)gab p̂b − (3)g−1/4[ p̂a, (3)gab[ p̂b, (3)g1/4]], (3.4.37)

giving the above expression for the quantum-mechanical potential.
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

In fact, for our metric (2.4.4), in lowest order in c−1 the quantum-mechanical potential
is given by h̄2Q = − h̄2

8mc ∆(δabgab
(1)) + O(c−2) = − h̄2

8mc [∆ tr(ηg−1
(1))] + O(c−2), thus repro-

ducing the additional term arising in the WKB method. This apparent connection of our
WKB-like expansion to the three-dimensional ‘spatial’ geometry seems interesting, but
further investigation in this direction goes beyond the scope of this thesis, since in this
post-Newtonian context, the explicit comparison to the Newtonian limit – which also
includes flat space – is the specific subject of interest.

Note that one could argue that DeWitt’s Hamiltonian can be arrived at by canonical
quantisation in some sense, since the Laplace–Beltrami operator can be written as
−h̄2 (3)∆LB = (3)g−1/4 p̂a

(3)g1/2 (3)gab p̂b
(3)g−1/4 in terms of the momentum operator

(3.2.5) corresponding to the ‘geometric’ scalar product (3.2.4) which was used by
DeWitt. However, such a ‘clever rewriting’ of the Newtonian kinetic term in the
classical Hamiltonian as 1

2m
(3)gab pa pb = 1

2m
(3)g−1/4 pa

(3)g1/2 (3)gab pb
(3)g−1/4 before

replacing momenta by operators involves more than just choosing some symmetrised
operator ordering, and thus is not part of what we called ‘canonical quantisation’ above.

3.4.3. The Eddington–Robertson PPN metric as an explicit example

We now will apply the WKB-like expansion method to the Eddington–Robertson para-
metrised post-Newtonian metric as given by (2.5.1), (2.5.2).

Inserting the metric components, the equations arising for the coefficient functions
a0, a1 from (3.4.24) at orders c0, c−1 are simply the Schrödinger equations

ih̄∂tai =

(
− h̄2

2m
∆ + mφ

)
ai, i = 0, 1. (3.4.38)

At orders c−2, c−3, we get – again for i = 0, 1 –

0 =

[
− im

h̄
(∂tg00

(2))−
2im

h̄
g00
(2)∂t − ∂2

t +
im
2h̄

(
− [∂t tr(ηg−1

(2))] +
1
2
[∂t tr(η g−1

(2,2)︸ ︷︷ ︸
=g−1

(1)ηg−1
(1)=0

)]

)

+
1
2

(
−[∂a tr(ηg−1

(2))]δ
ab∂b +

1
2
[∂a tr(ηg−1

(2,2))]δ
ab∂b

)
+ (∂agab

(2)) ∂b + gab
(2)∂a∂b −

m2

h̄2 g00
(4)

]
ai +

(
−m2

h̄2 g00
(2) +

2im
h̄

∂t + ∆
)

ai+2

=

(
− 4im

h̄
φ∂t − ∂2

t −
im
h̄
(3γ + 1)(∂tφ)− (γ− 1)(∂aφ)δab∂b

+ 2γφ∆− m2

h̄2 (2β− 4)φ2
)

ai +

(
−2m2

h̄2 φ +
2im

h̄
∂t + ∆

)
ai+2 , (3.4.39)
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3.4. WKB-like expansion of the Klein–Gordon equation

or equivalently the Schrödinger-like equations

ih̄∂tai+2 =

(
− h̄2

2m
∆ + mφ

)
ai+2 +

(
2ih̄φ∂t +

h̄2

2m
∂2

t +
ih̄
2
(3γ + 1)(∂tφ)

+
h̄2

2m
(γ− 1)(∂aφ)δab∂b −

h̄2

m
γφ∆ +

m
2
(2β− 4)φ2

)
ai (3.4.40)

for a2, a3. Using the Schrödinger equation (3.4.38) for a0, a1, we have

h̄2

2m
∂2

t ai = −
ih̄
2m

∂t

(
− h̄2

2m
∆ + mφ

)
ai = −

ih̄
2
(∂tφ)ai −

1
2m

(
− h̄2

2m
∆ + mφ

)
ih̄∂tai

= − ih̄
2
(∂tφ)ai −

1
2m

(
− h̄2

2m
∆ + mφ

)2

ai

= − ih̄
2
(∂tφ)ai −

h̄4

8m3 ∆∆ai +
h̄2

4m
∆(φai) +

h̄2

4m
φ∆ai −

m
2

φ2ai

= − ih̄
2
(∂tφ)ai −

h̄4

8m3 ∆∆ai +
h̄2

4m
(∆φ)ai +

h̄2

2m
(∂aφ)δab∂bai +

h̄2

2m
φ∆ai −

m
2

φ2ai ,

(3.4.41)

and thus the equation for a2, a3 becomes

ih̄∂tai+2 =

(
− h̄2

2m
∆ + mφ

)
ai+2 +

(
− h̄4

8m3 ∆∆ +
h̄2

4m
(∆φ) +

3ih̄
2

γ(∂tφ)

+
h̄2

2m
γ(∂aφ)δab∂b −

h̄2

2m
(2γ + 1)φ∆ +

m
2
(2β− 1)φ2

)
ai . (3.4.42)

At higher orders, the coefficients in the expanded Klein–Gordon equation (3.4.24) are
undetermined, since the metric components are undetermined.

Combining the equations (3.4.38) for a0, a1 and (3.4.42) for a2, a3, the Hamiltonian
in the Schrödinger equation ih̄∂tψ = Hψ for the ‘wavefunction’ (i.e. phase-shifted
positive-frequency Klein–Gordon field) ψ reads

H = − h̄2

2m
∆ + mφ +

1
c2

(
− h̄4

8m3 ∆∆ +
h̄2

4m
(∆φ) +

3ih̄
2

γ(∂tφ)

+
h̄2

2m
γ(∂aφ)δab∂b −

h̄2

2m
(2γ + 1)φ∆ +

m
2
(2β− 1)φ2

)
+ O(c−4), (3.4.43)

reproducing, up to notational differences and the fact that we did not consider coupling
to an electromagnetic field, the result of Lämmerzahl [Läm95, eq. (8)].
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

To transform to the flat scalar product, we note that in our metric and using this
Hamiltonian, the Klein–Gordon inner product (3.4.29) is given by

1
2mc2 〈ΨKG, ΦKG〉KG =

∫
d3x

√
(3)g

(
ψϕ− h̄2

2m2c2 ψ∆ϕ + O(c−4)

)
. (3.4.44)

Note that in the brackets, we did not need to expand any further since the factor√
(3)g is only determined up to O(c−4) by the metric (2.5.1). For the expression (3.4.44)

to equal the flat scalar product
∫

d3x ψf ϕf, the flat wavefunction has to have the

form ψf =
(

1− h̄2

2m2c2 ∆
)1/2

(3)g1/4 ψ + O(c−4) (note that 1
c2 ∆ commutes with (3)g up to

higher-order terms), resulting in the flat Hamiltonian

Hf = ih̄
(

∂t
(3)g1/4

)
(3)g−1/4

+

(
1− h̄2

2m2c2 ∆

)1/2
(3)g1/4 H (3)g−1/4

(
1− h̄2

2m2c2 ∆

)−1/2

+ O(c−4). (3.4.45)

Using (3)g1/4 = 1− 3
2 γ

φ
c2 + O(c−4) and

(
1− h̄2

2m2c2 ∆
)1/2

= 1 − h̄2

4m2c2 ∆ + O(c−4), this
yields

Hf = −ih̄
(

∂t
3
2

γ
φ

c2

)
+ H +

[
−3

2
γ

φ

c2 ,− h̄2

2m
∆

]
+

[
− h̄2

4m2c2 ∆, mφ

]
+ O(c−4)

= −3ih̄
2c2 γ(∂tφ) + H − h̄2

4mc2 (3γ + 1)[∆, φ] + O(c−4)

= −3ih̄
2c2 γ(∂tφ) + H − h̄2

4mc2 (3γ + 1)((∆φ) + 2(∂aφ)δab∂b) + O(c−4)

= − h̄2

2m
∆ + mφ +

1
c2

(
− h̄4

8m3 ∆∆− 3h̄2

4m
γ(∆φ)

− h̄2

2m
(2γ + 1)(∂aφ)δab∂b −

h̄2

2m
(2γ + 1)φ∆ +

m
2
(2β− 1)φ2

)
+ O(c−4),

(3.4.46)

reproducing the flat Hamiltonian of Lämmerzahl [Läm95, eq. (16)].
In comparison, the classical Hamiltonian (minus the rest energy) expands to

Hclass =
1√
−g00

c
[

m2c2 +

(
gab − 1

g00 g0ag0b
)

pa pb

]1/2

−mc2 +
c

g00 g0a pb

=
p2

2m
+ mφ + c−2

(
− (p2)2

8m3 +
mφ2

2
(2β− 1) +

φ

2m
(2γ + 1)p2

)
+ O(c−4).

(3.4.47)
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By canonical quantisation of this, we cannot reproduce the Hamiltonian obtained from
the WKB expansion in the case of a general γ, but just for some special choices of γ,
depending on the ordering scheme: for example, in the anticommutator ordering
scheme, we would quantise the classical function φp2 as

1
2
{−h̄2∆, φ} = − h̄2

2
(∆φ)− h̄2(∂aφ)δab∂b − h̄2φ∆ , (3.4.48)

reproducing the WKB Hamiltonian in the case of γ = 1; but when quantising it as
−h̄2δab∂a(φ∂b ·) = −h̄2(∂aφ)δab∂b − h̄2φ∆, this would lead to agreement with the WKB

Hamiltonian for γ = 0. Note however that this difference concerns a term proportional
to ∆φ, the Laplacian of the Newtonian potential. By the Newtonian gravitational field
equation, this term is (in lowest order) proportional to the mass density generating the
gravitational field. Thus it is irrelevant in physical situations concerning the outside
of the generating matter distribution, for example in quantum-optical experiments in
the gravitational field of the earth taking place outside of the earth. Nevertheless, this
example shows that the way in which PPN parameters enter a quantum description
delicately depends on the quantisation method.

3.5. General comparison of the two methods by momentum
expansion

We will now describe a method by which general statements about similarities and
differences between the two approaches explained above can be made in the case
of stationary spacetimes, without any post-Newtonian expansion in c−1. Instead, we
consider ‘potential’ terms and terms linear, quadratic, . . . in momentum, i.e. we perform
a (formal) expansion in momenta. Of course, this also amounts to somewhat of a post-
Newtonian expansion – although just relating to the particle momentum/velocity, not
the gravitational field per se.

3.5.1. The Klein–Gordon equation as a quadratic equation for the
Hamiltonian

We assume a stationary physical spacetime such that the background time evolution
vector field8 u = ∂t is (a constant multiple of) the stationarity Killing field, i.e. ∂tgµν = 0.

8In fact, for the ‘momentum expansion’ to be developed in the following we do not need to expand
the physical metric in any way, and thus we do not need a background metric to define a notion
of ‘absence of gravity’. Nevertheless, we need a notion of ‘space’ – but this could also be given by
something else than the orthogonal complement of the stationarity field with respect to a background
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

The coordinate expression for the d’Alembert operator on functions is thus

� f =
1√−g

∂µ(
√
−ggµν∂ν f )

=
1√−g

(∂µ

√
−g)gµν∂ν f + (∂µgµν)∂ν f + gµν∂µ∂ν f

=
1

2g
(∂ag)gaν∂ν f + (∂agaν)∂ν f + gµν∂µ∂ν f . (3.5.1)

Hence, the minimally coupled Klein–Gordon equation reads

0 =

(
�− m2c2

h̄2

)
Ψ

=
1
c

1
2g

(∂ag)g0a∂tΨ +
1

2g
(∂ag)gab∂bΨ +

1
c
(∂ag0a) ∂tΨ + (∂agab)∂bΨ

+
1
c2 g00∂2

t Ψ +
2
c

g0a∂a∂tΨ + gab∂a∂bΨ− m2c2

h̄2 Ψ. (3.5.2)

This means that the space of solutions of the Klein–Gordon equation is the kernel of
P(ih̄∂t), where for an operator A acting on the functions on the spacetime, P(A) is the
following operator:

P(A) =− i
h̄c

1
2g

(∂ag)g0a A +
1

2g
(∂ag)gab∂b −

i
h̄c

(∂ag0a)A + (∂agab)∂b

− 1
h̄2c2

g00A2 − 2i
h̄c

g0a∂a ◦ A + gab∂a∂b −
m2c2

h̄2 (3.5.3)

Thus, wanting to write the Klein–Gordon equation in the form of a Schrödinger
equation ih̄∂tΨ = HΨ (and thus restricting to the solutions of the Klein–Gordon
equation for which this is possible), we see that this can be achieved by demanding the
Hamiltonian H to be a solution of the quadratic operator equation

0 = P(H) (3.5.4)

and be composed only of spatial derivative operators and coefficients of the metric, not
involving any time derivatives: stationarity of the metric then implies [∂t, H] = 0, such
that the Schrödinger equation yields (ih̄∂t)2Ψ = ih̄∂tHΨ = Hih̄∂tΨ = H2Ψ, leading to

metric. In any case, our approach based on a background metric leads to a decomposition as needed
in an easy and well-defined geometric way.
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3.5. General comparison of the two methods by momentum expansion

P(ih̄∂t)Ψ = P(H)Ψ = 0 by (3.5.4); i.e. every solution of the Schrödinger equation is
also a solution of the Klein–Gordon equation.

In the following, we will solve equation (3.5.4) by expanding H as a formal power
series in spatial derivative operators, i.e. momentum operators. The two possible
solutions we will obtain for H correspond to positive and negative frequency solutions
of the Klein–Gordon equation, respectively.

3.5.2. Momentum expansion and first-order solution

We expand H as H = H(0) + H(1) + O(∂2
a), where H(k) includes all terms involving

k spatial derivative operators. Using this notation, the lowest order term of (3.5.4),
involving no spatial derivatives, reads

0 = − 1
h̄2c2

g00H2
(0) −

m2c2

h̄2 , (3.5.5)

giving

H(0) =
mc2√
−g00

(3.5.6)

where we choose the positive square root since we are interested in positive frequency
solutions of the Klein–Gordon equation.

At order ∂1
a, equation (3.5.4) gives

0 =− i
h̄c

1
2g

(∂ag)g0aH(0) −
i

h̄c
(∂ag0a)H(0)

− 1
h̄2c2

g00(2H(0)H(1) + [H(1), H(0)])−
2i
h̄c

g0a∂a ◦ H(0) . (3.5.7)

Writing H(1) = H(1,M) + Ha
(N,C)∂a where H(1,M) is a multiplication operator (involving

one spatial differentiation of some function) and Ha
(N,C) are coefficient functions not

involving any differentiations, we have [H(1), H(0)] = [Ha
(1,C)∂a, H(0)] = Ha

(1,C)(∂aH(0)).
Thus, the equation reads

0 =− i
h̄c

1
2g

(∂ag)g0aH(0) −
i

h̄c
(∂ag0a)H(0) −

2g00

h̄2c2
H(0)H(1)

− g00

h̄2c2
Ha

(1,C)(∂aH(0))−
2i
h̄c

g0a(∂aH(0))−
2i
h̄c

g0aH(0)∂a . (3.5.8)

The right-hand side now has two different components: a multiplication operator and
an operator differentiating the function it acts upon. We demand that these components
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

vanish independently. The ‘differentiating part’ of (3.5.8) is

0 = −2g00

h̄2c2
H(0)H

a
(1,C)∂a −

2i
h̄c

g0aH(0)∂a , (3.5.9)

or equivalently

Ha
(1,C) = −ih̄c

g0a

g00 . (3.5.10)

Using this, the multiplication operator part of (3.5.8) reads

0 = − i
h̄c

1
2g

(∂ag)g0aH(0) −
i

h̄c
(∂ag0a)H(0) −

2g00

h̄2c2
H(0)H(1,M) −

i
h̄c

g0a(∂aH(0)), (3.5.11)

giving

H(1,M) = −
ih̄c

4g00g
(∂ag)g0a − ih̄c

2g00 (∂ag0a)− ih̄c
2g00 g0a 1

H(0)
(∂aH(0)). (3.5.12)

Since 1
H(0)

(∂aH(0)) =
√
−g00 ∂a

1√
−g00

= g00

2 ∂a
1

g00 , equations (3.5.6), (3.5.10) and (3.5.12)

together yield the result

H =
mc2√
−g00

− ih̄c
4g00g

(∂ag)g0a − ih̄c
2g00 (∂ag0a)− ih̄c

4
g0a
(

∂a
1

g00

)
− ih̄c

g0a

g00 ∂a + O(∂2
a)

(3.5.13)
for the Hamiltonian in the Schrödinger form

ih̄∂tΨ = HΨ (3.5.14)

of the positive frequency Klein–Gordon equation, at first order in momenta.

3.5.3. Transformation to ‘flat’ scalar product and comparison with canonical
quantisation

To transform this Hamiltonian to the ‘flat’ scalar product, we note that for two positive
frequency solutions Ψ and Φ, the Klein–Gordon inner product is given by

〈Ψ, Φ〉KG = ih̄c
∫

d3x
√

(3)g g0ν[(∂νΨ)Φ−Ψ(∂νΦ)]
1√
−g00

=
∫

d3x
√

(3)g

(√
−g00

[
(HΨ)Φ + Ψ(HΦ)

]
+ ih̄c

g0a√
−g00

[
(∂aΨ)Φ−Ψ(∂aΦ)

] )

(using (3.5.13)) =
∫

d3x
√

(3)g 2mc2 ΨΦ + O(∂2
a). (3.5.15)
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3.5. General comparison of the two methods by momentum expansion

For this to equal the ‘flat’ scalar product
∫

d3x Ψf Φf, we see that the ‘flat wavefunction’
has to have the form Ψf =

√
2mc2 (3)g1/4 Ψ + O(∂2

a), and therefore evolves according to
the Schrödinger equation ih̄∂tΨf = HfΨf with the ‘flat Hamiltonian’

Hf =
(3)g1/4 H

(
(3)g−1/4·

)
+ O(∂2

a). (3.5.16)

For calculating Hf from H, we note that conjugating with a multiplication operator
leaves multiplication operators invariant and that

(3)g1/4 ∂a

(
(3)g−1/4 ·

)
= ∂a −

1
4

[
∂a ln

(
(3)g

)]
= ∂a −

1
4
[
∂a ln

(
g00g

)]
= ∂a −

1
4

1
g
(∂ag)− 1

4
1

g00

(
∂ag00) , (3.5.17)

yielding the final result

Hf =
mc2√
−g00

− ih̄c
4g00g

(∂ag)g0a − ih̄c
2g00

(
∂ag0a)− ih̄c

4
g0a
(

∂a
1

g00

)
− ih̄c

g0a

g00

(
∂a −

1
4g

(∂ag)− 1
4g00

(
∂ag00))+ O(∂2

a)

=
mc2√
−g00

− ih̄c
2

(
∂a

g0a

g00

)
− ih̄c

g0a

g00 ∂a + O(∂2
a)

=
mc2√
−g00

+ c
1
2

{
g0a

g00 ,−ih̄∂a

}
+ O(∂2

a). (3.5.18)

Looking at the momentum expansion of the classical Hamiltonian

Hclass =
1√
−g00

c
[

m2c2 +

(
gab − 1

g00 g0ag0b
)

pa pb

]1/2

+
c

g00 g0a pa

=
mc2√
−g00

+
c

g00 g0a pa + O(p2
a), (3.5.19)

we see that ‘canonical quantisation’ of this Hamiltonian will lead to the same ‘potential
term’ and to the same term linear in momentum as did the Klein–Gordon equation,
regardless of the adopted ordering scheme. The reason for this is that for terms of linear
order in momentum, any ordering scheme leads to ‘anticommutator quantisation’, as is
easily shown:
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3. Post-Newtonian corrections to Schrödinger equations in gravitational fields

Any general canonically quantised, arbitrarily symmetrised operator of linear order
in momentum is the sum of terms of the form Â = 1

2 ( f p̄ah + hp̄a f ), where f , h are
real-valued functions of position (here identified with the corresponding self-adjoint
multiplication operators). The classical phase space function corresponding to Â is
A = 1

2 ( f pah + hpa f ) = f hpa. Rewriting Â as

Â =
1
2
( f p̄ah + hp̄a f ) =

1
2
(

p̄a f h + [ f , p̄a]h + h f p̄a + h[ p̄a, f ]
)

=
1
2
(

p̄a f h + (ih̄∂a f )h + h f p̄a − h(ih̄∂a f )
)
=

1
2
( p̄a f h + h f p̄a)

=
1
2
{ f h, p̄a}, (3.5.20)

we thus see that it arises from A by ‘anticommutator quantisation’, as desired.
We thus have shown that in stationary post-Newtonian spacetimes, the Hamiltonians

obtained by naive canonical quantisation of free particle motion and by formally
expanding the Klein–Gordon equation agree to linear order in momentum. In particular,
this means that the lowest-order coupling to gravitomagnetic fields agrees in both
methods.
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4. Post-Newtonian Hamiltonian
description of an atom in a
weak gravitational field

In this chapter, we extend the systematic calculation of an ‘approximately relativistic’, i.e.
first order post-Newtonian, Hamiltonian for centre of mass and internal dynamics of an
electromagnetically bound two-particle system by Sonnleitner and Barnett [SB18] to the
case including a weak post-Newtonian gravitational background field, described by the
Eddington–Robertson PPN metric. Starting from a properly relativistic description of the
situation, this approach allows to systematically derive the coupling of the model system
to gravity, instead of ‘guessing’ it by means of classical notions of ‘relativistic effects’.

This chapter is based on material that has been published in [SG19b]. However,
here we significantly extend the published results by dropping the approximating
assumption of constant gravitational potential over the extent of the system. We also
clarify a small inconsistency that was present in the treatment of the non-gravitational
case by Sonnleitner and Barnett in [SB18], as well as in our published article [SG19b].

4.1. Introduction

Motivated by inconsistencies in the usual approximative Galilei-relativistic description
of quantum-optical interactions of atoms with light, which by an ad hoc semi-classical
argumentation are easily seen to be possibly resolved in a special-relativistic description,
Sonnleitner and Barnett have developed in [SB18] a fully systematic derivation of
an ‘approximately relativistic’ Hamiltonian describing a simple atom in an external
electromagnetic field. It is the purpose of this chapter to extend this so as to also
include gravity approximately, more precisely a post-Newtonian gravitational field as
described by the Eddington–Robertson PPN metric. As discussed in the introduction,
such a generalisation is, apart from its conceptual value, of immediate interest for
describing and devising quantum-optical experiments in gravitational fields, e.g. in
atom interferometry.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

The greatest value of Sonnleitner and Barnett’s basing their whole calculation in
[SB18] on a properly relativistic treatment of the situation (an atom interacting with
an external electromagnetic field) can be seen in allowing a systematic derivation of
a complete description without any ad hoc assumptions. In the end, the first-order
post-Newtonian Hamiltonian they obtained could then be used to interpret aspects of
the situation in terms of classical ‘relativistic corrections’. For example, the ‘centre of
mass’ part of the final Hamiltonian has the form of a single-particle kinetic Hamiltonian,
where the rôle of the rest mass of this particle is played by the total mass-energy of
the atom, i.e. the sum of the rest masses of the constituent particles and the internal
atomic energy divided by c2. Thus, the computation in [SB18] explicitly shows that
this physically intuitive picture of a ‘composite particle’, suggested by mass–energy
equivalence, can, in fact, be derived in a controlled and systematic approximation
scheme, rather than merely made plausible from semi-intuitive physical considerations.

As will be shown by our calculations, a similar interpretation is possible for the
situation including external gravitational fields: when expressing the final Hamiltonian
using the physical spacetime metric, an intuitive ‘composite point particle’ picture
including the ‘mass defect’ due to mass–energy equivalence will again be available for
the centre of mass dynamics. This lends justification based on detailed calculations
within systematic approximation schemes to some of the naiver approaches that are
based on a priori assumptions concerning the gravity–matter coupling.

In section 4.2, we set up the background for our calculations: after describing the
physical system under consideration, we will give a somewhat detailed exposition of
the method of computation in [SB18], in which we will also address an inconsistency
of the original approach. Then we will discuss how our geometric post-Newtonian
expansion framework introduced in chapter 2 allows us to develop our gravitational
calculation in parallel to that from [SB18].

In the following, we will compute in detail the ‘gravitational corrections’ to the calcu-
lation by Sonnleitner and Barnett [SB18] arising from the presence of the gravitational
field. Section 4.3 will deal with the coupling of the gravitational field to the kinetic terms
of the particles only, ignoring couplings of the gravitational to the electromagnetic field.

In section 4.4, we will then compute the Lagrangian of the electromagnetic field in
the presence of the gravitational field. This allows us to compute the total Hamiltonian
describing the atomic system in section 4.5.1, by repeating the calculation from section
4.3 while including the ‘gravitational corrections’ to electromagnetism as obtained in
section 4.4. The resulting Hamiltonian will then be interpreted in terms of the physical
spacetime metric and compared to earlier results in the remainder of section 4.5.

In sections 4.3 and 4.5.1, we will very closely follow the calculation from and present-
ation in [SB18]. For the reader’s convenience, we have reproduced all the relevant
formulae from [SB18] that are used in our calculation in section 4.2.1, in which we
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4.2. A composite system in external electromagnetic and gravitational fields

describe Sonnleitner and Barnett’s work. We use the original numbering, prepended
with ‘[SB18].’, so for example ([SB18].25f) refers to equation (25f) of [SB18]. As some
of the equations from [SB18] contain minor errors (mostly sign errors), we here give
corrected versions. The corresponding equation numbers are marked with a star, e.g.
([SB18].12?).

A calculation using methods very similar to those of [SB18] including external
gravitational fields was performed by Marzlin already in 1995 [Mar95]1; but unlike
Sonnleitner and Barnett in [SB18] or our calculation in the following, Marzlin did not
perform a full first-order post-Newtonian expansion and instead focused on the electric
dipole coupling only.

4.2. A composite system in external electromagnetic and
gravitational fields

We consider a simple system consisting of two particles without spin, with respective
electric charges e1, e2, masses m1, m2, and spatial positions r1, r2. For simplicity we
assume the charges to be equal and opposite, i.e. e2 = −e1 =: e. In what follows, we
will take into account their mutual electromagnetic interaction, but neglect their mutual
gravitational interaction. This two-particle system, which we will sometimes refer to
as ‘atom’, will be placed in an external electromagnetic field, which we will take into
account, as well as an external gravitational field, which we will also take into account.
It is our inclusion of the latter that extends the previous study [SB18].

4.2.1. External electromagnetic fields – the work of Sonnleitner and Barnett

In [SB18], Sonnleitner and Barnett describe a systematic method to obtain an ‘approx-
imately relativistic’ quantum Hamiltonian for a system as described above interacting
with an external electromagnetic field, where ‘approximately relativistic’ refers to the
inclusion of lowest order post-Newtonian correction terms, i.e. of order c−2. Their
work was motivated by their own observation [STB17; BS18] that the electromagnetic
interaction of a decaying atom, which in QED follows an intrinsically special-relativistic
symmetry (i.e. Poincaré invariance), will give rise to unnaturally looking friction-like
terms that seem to contradict the relativity principle (which, of course, they don’t) if
interpreted in a ‘non-relativistic’ (i.e. Galilei-invariant) setting of ordinary quantum
mechanics. Their correct conclusion in [SB18] was that this confusion can be altogether
avoided by replacing this ‘hotchpotch’ (their wording, see last line on p. 042106-9 of

1I am grateful to Alexander Friedrich for pointing out this reference to me.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

[SB18]) of symmetry concepts by a systematic post-Newtonian derivation starting from
a common, manifestly Poincaré-symmetric description.

As our development will closely follow theirs, we will now describe the strategy of
[SB18] in some detail. In the course of this, we will also reproduce all formulae from
[SB18] that will be used in the remainder of this chapter. We use the original numbering,
prepended with ‘[SB18].’. For formulae containing errors in [SB18] (mostly sign errors),
we give here a corrected version; the corrections are highlighted in red and the number
is marked with a star. In addition to that, there is a conceptual inconsistency in the
treatment in [SB18] that we will address below. This will necessitate some further
(rather small) amendments to the equations, which will be marked in the same way as
the other errors.

Sonnleitner and Barnett start with the classical Poincaré-invariant Lagrangian func-
tion describing two particles interacting with electromagnetic potentials2:

L =− ∑
i=1,2

mic2
√

1− ṙ2
i /c2 +

∫
d3x (j · Atot. − ρφel.,tot.)

+
ε0

2

∫
d3x [(∂t Atot. +∇φel.,tot.)

2 − c2(∇× Atot.)
2]. ([SB18].4)

Note that we have changed the variable name of the total electric potential to φel.,tot. so
as to avoid confusion with the Newtonian gravitational potential φ from the Eddington–
Robertson PPN metric. j denotes the electric current density of the particles, and ρ the
charge density.

Sonnleitner and Barnett then split the electromagnetic potentials into ‘internal’ (i.e.
generated by the particles) and ‘external’ parts, employ the Coulomb gauge, and solve
the Maxwell equations for the internal part in lowest order, expressing the solutions
in terms of the particles’ positions and velocities (see the solutions in ([SB18].A1)
and ([SB18].A3) at the end of this section). The total vector potential, which is a
transverse field (in the Helmholtz decomposition) due to the gauge condition, is split
as A⊥tot. = A⊥ +A⊥ where A⊥ denotes the external and A⊥ the internal part. Due to
the absence of external electric charges and the gauge condition, the external electric
potential vanishes, such that φel.,tot. = φel. is purely internal.

The idea is now to insert the solutions for the internal potentials into the Lag-
rangian ([SB18].4) and expand the kinetic terms for the particles, so as to obtain a
post-Newtonian Lagrangian on which to base the further derivation. However, at this
stage an inconsistency is introduced into the framework of [SB18], which we are now
going to explain. Sonnleitner and Barnett want to keep the external vector potential

2In the absence of gravity, as this is the situation considered in [SB18].
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A⊥ as a dynamical variable; as such, its equations of motion have to be the vacuum
Maxwell equations (i.e. without any source term), while it still has to enter the equations
of motion of the particles themselves. This is indeed the case for the Lagrangian which
arises from directly inserting the internal potentials as obtained by solving the Maxwell
equations: variation of the action given by this Lagrangian leads to Euler–Lagrange
equations just as desired. This Lagrangian, however, contains second-order time deriv-
atives of the particle positions, spoiling the application of conventional Hamiltonian
formalism. This problem does not show up when following Sonnleitner and Barnett,
since the problematic terms are related to formally diverging backreaction terms and
are therefore disregarded from the Lagrangian in [SB18]. However, this last neglection
is problematic if one keeps the external vector potential A⊥ as dynamical: the just-
eliminated terms would have been the ones ensuring the vacuum Maxwell equations
as equations of motion for the external potential – without them, the Lagrangian gives,
again, the sourced Maxwell equations for the external potential, and the formalism
becomes inconsistent. This inconsistency was not addressed in [SB18], and we were
also not aware of it at the time of publication of our article [SG19b].

However, as it turns out, there is a very easy way to remedy this problem: we
proceed almost exactly like Sonnleitner and Barnett did, the only difference being
that we remove the external vector potential A⊥ from its role as dynamical degree of
freedom, treating it as a given external field instead (satisfying the vacuum Maxwell
equations). This way we can ensure the consistency of the equations of motion while still
performing the internal–external field split3. The one point in Sonnleitner and Barnett’s
derivation where one might be questioning if it still works without the electromagnetic
field being a dynamical variable, namely the PZW transformation, will turn out to still be
applicable just fine when reinterpreted in the right way, as we will explain below. Note
that although the external field is eliminated as a dynamical variable, when Legendre
transforming the Lagrangian in order to go over to the Hamiltonian formalism, we are
going to add a term corresponding to the external field to the resulting Hamiltonian,
such as to stay as close as possible to the original work of [SB18], and to obtain the
correct value for the energy, including the external field energy4.

3By employing some form of perturbation theory on a given non-zero classical background, as is
sometimes used in quantum optics, it is probably possible to render the split into internal and external
fields consistent while still keeping some electromagnetic / photonic degrees of freedom as dynamical
variables. However, I (the author) am not well enough acquainted with such techniques – I myself
being, more or less, a classical relativist – and thus restrict to those parts of the argumentation which
I am confident of. If such a perturbation-theoretic treatment is indeed possible, it should be easily
applicable to the results we will derive below.

4And to make our results as easily amenable as possible to a potential perturbation-theoretic treatment /
interpretation as alluded to in the previous footnote.
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Inserting the internal potential solutions and expanding the kinetic terms for the
particles to order c−2 (disregarding the rest energy term), as well as neglecting elec-
tromagnetic terms of order O(c−4) and dropping terms related to formally diverging
backreaction terms, one arrives at the post-Newtonian Lagrangian

L(r1, ṙ1, r2, ṙ2) = LDarwin(r1, ṙ1, r2, ṙ2) +
ε0

2

∫
d3x [(∂t A⊥)2

− c2(∇× A⊥)2] +
∫

d3x j · A⊥ , ([SB18].8?)

LDarwin(r1, ṙ1, r2, ṙ2) =
m1ṙ2

1
2

+
m1ṙ4

1
8c2 +

m2ṙ2
2

2
+

m2ṙ4
2

8c2

− 1
4πε0

e1e2

r

(
1− ṙ1 · ṙ2

2c2

)
+

e1e2

4πε0

(ṙ1 · r)(ṙ2 · r)
2r3c2 , ([SB18].9)

where r = r1 − r2 and r = |r|. Note that here, as explained above, A⊥ is treated as a
given external field that appears in the Lagrangian, not a dynamical variable. LDarwin is
the famous Darwin Lagrangian [Dar20], involving ‘correction terms’ to the Coulomb
potential arising from the internal atomic motion.

This classical Lagrangian is then Legendre transformed to obtain a classical Hamilto-
nian. As explained above, in order to get the correct value for the energy, including the
external field energy, we add a term as one would obtain when Legrendre transforming
also with respect to the external field, even though it is not a dynamical variable.
We also use the notation Π⊥ = ε0∂t A⊥ for the ‘would-be canonical momentum’ con-
jugate to the external field, but have to keep in mind that it is a fixed field, not a
real momentum conjugate to any configuration variable. As would be the case for a
‘true’ electromagnetic canonical momentum, −Π⊥/ε0 = −∂t A⊥ = E⊥ is, physically
speaking, the external electric field.

Keeping these caveats in mind, the classical Hamiltonian reads

H =
p̄2

1
2m1
− p̄4

1

8m3
1c2

+
p̄2

2
2m2
− p̄4

2

8m3
2c2

+
1

4πε0

e1e2

r

(
1− p̄1 · p̄2

2m1m2c2

)
− e1e2

4πε0

(p̄1 · r)(p̄2 · r)
2r3c2m1m2

+
ε0

2

∫
d3x [(Π⊥/ε0)

2 + c2(∇× A⊥)2], ([SB18].12?)

where p̄i = pi − ei A⊥(ri) (?).
This classical Hamiltonian is now canonically quantised to obtain a quantum Hamilto-

nian in what Sonnleitner and Barnett call the ‘minimal coupling form’. They then
perform a Power–Zienau–Woolley (PZW) unitary transformation [PZ59; Woo71; BL83]
together with a multipolar expansion of the external field in order to transform the
Hamiltonian into a so-called ‘multipolar form’. The details of this, including the
neccessary amendments due to A⊥ no longer being a dynamical field, are as follows.
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The PZW transformation operator is

U = e−iΛ = exp
[
− i

h̄

∫
d3xP(x, t) · A⊥(x, t)

]
, ([SB18].14?)

where P is the polarisation field

P(x, t) = ∑
i=1,2

ei[ri(t)− R(t)]
∫ 1

0
dλ δ

(
x− R(t)− λ[ri(t)− R(t)]

)
. ([SB18].15)

The transformation amounts to the following change of canonical momenta:

pi → UpiU
† = pi + h̄∇ri Λ ([SB18].19a)

Since we treat the external field as non-dynamical, none of the variables corresponding
to it change under the transformation. However, to reflect the change that would happen
if A⊥ were still a dynamical field5, we introduce the notation Π̃⊥ := Π⊥ −P⊥ for the
‘would-be canonical field momentum’ after the PZW transformation, amounting to the
change

Π⊥(x)→ Π̃⊥(x) +P⊥(x) ([SB18].19b?)

in the Hamiltonian. Physically, in line with the usual interpretation for the canonical
field momentum after a PZW transformation [BL83], −Π̃⊥ = −Π⊥ +P⊥(x) = D⊥ is
the electric displacement field. Note that in [SB18], the somewhat misleading notation
E⊥ is used for the quantity ‘−(external field momentum after PZW trafo)⊥/ε0’, as if it
corresponded to an electric field proper.

In electric dipole approximation, i.e. expanding to first order in r̄i := ri − R, and
using ∑j=1,2 ej = 0, one finds (see [SB18] for details)

h̄∇r1,2 Λ ' e1,2[A⊥(R) + (r̄1,2 ·∇)A⊥(R)] +
e1r1 + e2r2

2
× [∇× A⊥(R)]. ([SB18].21?)

Thus, under the PZW transformation and the dipole approximation the momenta
transform as pi − ei A(ri)→ pi + d× B(R)/2 (?), where d = e1r1 + e2r2 is the electric
dipole moment.

Terms of the form
pi · [d× B(R)]

mimjc2 ∝
|pi|
mic
|d · E(R)|

mjc2 ([SB18].22)

are neglected, since the atom–light interaction energy is assumed much smaller than
the internal atomic energy, which is in turn much smaller than the rest energies of the

5Again with the intent of staying as close as possible to the original work [SB18], and to allow a possible
perturbation-theoretic reinterpretation.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

particles. The multipolar Hamiltonian in electric dipole approximation is then

H[mult] '
[p1 +

1
2 d× B(R)]2

2m1
+

[p2 +
1
2 d× B(R)]2

2m2

− e2

4πε0r
+

ε0

2

∫
d3x [(Π̃⊥ +P⊥d )2/ε2

0 + c2B2]

− p4
1

8m3
1c2
− p4

2

8m3
2c2

+
e2

16πε0c2m1m2

×
[

p1 ·
1
r

p2 + (p1 · r)
1
r3 (r · p2) + (1↔ 2)

]
, ([SB18].23?)

where Pd = +d δ(x− R) (?) is the polarisation in electric dipole approximation.
Then, introducing Newtonian centre of mass and relative coordinates R, r, and the

corresponding canonical momenta P, pr, Sonnleitner and Barnett arrive at what they
call the centre of mass Hamiltonian:

H[com] = HC + HA + HAL + HL + HX ([SB18].25a)

HC =
P2

2M

[
1− P2

4M2c2 −
1

Mc2

(
p2

r
2µ
− e2

4πε0r

)]
([SB18].25b?)

HA =
p2

r
2µ

(
1−

m3
1 + m3

2
M3

p2
r

4µ2c2

)
− e2

4πε0

×
[

1
r
+

1
2µMc2

(
pr ·

1
r

pr + pr · r
1
r3 r · pr

)]
([SB18].25c)

HAL = −d · D⊥(R)

ε0
+

1
2M
{P · [d× B(R)] + H.c.}

− m1 −m2

4m1m2
{pr · [d× B(R)] + H.c.}

+
1

8µ
(d× B(R))2 +

1
2ε0

∫
d3xP⊥d

2
(x, t) ([SB18].25d?)

HL =
ε0

2

∫
d3x [(D⊥/ε0)

2 + c2B2] ([SB18].25e?)

HX = − (P · pr)
2

2M2µc2 +
e2

4πε0r
(P · r/r)2

2M2c2

+
m1 −m2

2µM2c2

{
(P · pr)p2

r /µ− e2

8πε0

×
[

1
r

P · pr +
1
r3 (P · r)(r · pr) + H.c.

]}
([SB18].25f)

Note that the Hamiltonian has been expressed in a form in which the external field
enters in terms of the magnetic field B = ∇× A⊥ and the electric displacement field
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D⊥ = −Π̃⊥ = −ε0∂t A⊥ +P⊥ (which was, as mentioned above, a little misleadingly
called ε0E⊥ in [SB18]). The Hamiltonian is split into terms that may be interpreted as
describing the central motion of the atom (HC), the internal atomic motion (HA), the
interaction between the atom and the external (‘light’) field (HAL), and a term giving
the external electromagnetic field energy (HL), as well as ‘cross terms’ (HX) coupling
the relative degrees of freedom to the central momentum P.

In order to eliminate this cross-term coupling, Sonnleitner and Barnett perform a
final canonical transformation to new coordinates Q, q and momenta P, p, which leaves
the Hamiltonian unchanged up to terms of order c−4 except for elimination of the cross
terms and the replacements (R, r, pr)→ (Q, q, p). This canonical transformation reads
as follows:

R = Q +
m1 −m2

2M2c2

[(
p2

2µ
q + H.c.

)
− e2

4πε0q
q
]

− 1
4M2c2 [(q · P)p + (P · p)q + H.c.] ([SB18].26a)

r = q +
m1 −m2

2µM2c2 [(q · P)p + H.c.]− q · P
2M2c2 P ([SB18].26b)

pr = p +
p · P

2M2c2 P− m1 −m2

2M2c2

×
[

p2

µ
P− e2

4πε0

(
1
q

P− 1
q3 (P · q)q

)]
([SB18].26c)

Finally, the internal electromagnetic potentials to our order of approximation (thus
in particular neglecting retardation), as obtained by solving the internal Maxwell
equations, are as follows:

φel.,ng(x, t) =
1

4πε0

∫
d3x′

ρ(x′, t)
|x− x′| ([SB18].A1)

A⊥ng(x, t) ' 1
4πε0c2

∫
d3x′

j(x′, t)
|x− x′| +

1
(4π)2ε0c2

∫
d3x′

×
∫

d3x′′
x− x′

|x− x′|3
j(x′′, t) · (x′ − x′′)
|x′ − x′′|3

=
1

8πε0c2 ∑
i=1,2

ei

{
ṙi

|x− ri|
+

(x− ri)[ṙi · (x− ri)]

|x− ri|3

}
([SB18].A3)

Here we have changed the variable names of the potentials to conform to our notation
– in particular we added the suffix ‘ng’, standing for ‘non-gravitational’ – and expressed
the magnetic potential in terms of ε0 instead of µ0 = 1/(ε0c2).
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

4.2.2. Including weak external gravitational fields

As already stated above, our contribution in this chapter will consist in generalising the
calculation of [SB18] to the case of the atom being situated in a weak external gravita-
tional field in addition to the electromagnetic field already considered in [SB18]. Our
aim is to likewise obtain an ‘approximately relativistic’, i.e. first-order post-Newtonian,
Hamiltonian describing this situation. The gravitational field will be described by the
Eddington–Robertson PPN metric as introduced in section 2.5.

Our post-Newtonian expansion scheme as laid out in chapter 2, based on the intro-
duction of geometric background structures that give meaning to ‘weak’ gravitational
fields and ‘slow’ velocities in the setting of a non-flat spacetime, provides the concep-
tual and computational basis which will allow us to implement the post-Newtonian
expansion employed in [SB18] also in the gravitational case. This enables us to develop
our calculation in great parallel with that of [SB18]: we use the ‘flat’ background struc-
ture to perform our computations, the benefit being the aimed-for direct comparison
with [SB18]. In the course of our derivation, ‘gravitational correction terms’ to the
non-gravitational formulae will show up. However, as already alluded to in section
2.2, it often is of great physical value to re-express the obtained results in terms of the
physical metric g instead of the background metric η. For example, the results will
contain geometric operations, like scalar products, which may be taken using either
of the metric structures provided by the formalism. What may at first appear as a
more or less complicated gravitational correction to the flat space result will often,
in fact, turn out to be a simple and straightforward transcription of the latter into
the proper physical metric, as one might have anticipated from some more or less
naive working-version of the equivalence principle. Interpretational issues like this are
well-known in the literature on gravitational couplings of quantum systems; see, e.g.,
[Mar95; Läm95]. For us, too, they will once more turn out to be relevant in connection
with the total Hamiltonian in section 4.5. We will derive and interpret the relevant
gravitational terms relative to the background structures (η, u) in order to keep the
analogy with the computation in [SB18], but then we shall re-interpret the results in
terms of the proper physical metric g in order to reveal their naturalness.

Since we are interested in a lowest-order post-Newtonian description, we will work
up to (and including) terms of order c−2 and neglect higher order terms. In fact,
corrections of higher order cannot be treated in a simple Hamiltonian formalism as
employed here, without explicitly including the internal electromagnetic field degrees
of freedom as dynamical variables: elimination of the internal field variables by solving
Maxwell’s equations will introduce retardation effects at higher orders, thus leading to
an action that is non-local in time, spoiling the application of conventional Hamiltonian
formalism.
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4.3. Coupling the gravitational field to the particles

4.3. Coupling the gravitational field to the particles

In this section we will work out the influence of the gravitational field when coupled
to the kinetic terms of the particles only, ignoring its couplings to the electromagnetic
field. The latter will be the subject of the following sections.

Starting from the Lagrangian for our atom in the absence of gravity and adding the
‘gravitational corrections’ to the kinetic terms of the particles, we will then repeat the
calculation of [SB18] to obtain a quantum Hamiltonian in centre of mass coordinates.

4.3.1. The classical Hamiltonian

For a single free point particle with mass m and position x, the classical kinetic
Lagrangian (parametrising the worldline by coordinate time) in our metric (2.5.1) reads

Lpoint = −mc2
√
−gµν ẋµ ẋν/c2

=
mẋ2

2

(
1 +

ẋ2

4c2

)
−mc2 −mφ

(
1 + (2β− 1)

φ

2c2

)
− 2γ + 1

2
mφ

c2 ẋ2 + O(c−4).

(4.3.1)

Now considering our two-particle system, the kinetic terms for the particles in gravity
are given as the sum of two terms as in (4.3.1). These lowest-order ‘gravitationally
corrected’ kinetic terms we include into the classical Lagrangian from ([SB18].4)6, which
described two particles interacting with an electromagnetic field in the absence of gravity.

Eliminating the internal electromagnetic fields literally as in the non-gravitational
case, we arrive at the post-Newtonian classical Lagrangian

Lnew = L−m1φ(r1)−m2φ(r2)−
2γ + 1

2
m1φ(r1)

c2 ṙ2
1 −

2γ + 1
2

m2φ(r2)

c2 ṙ2
2

− (2β− 1)
m1φ(r1)

2

2c2 − (2β− 1)
m2φ(r2)2

2c2 (4.3.2)

describing our electromagnetically bound two-particle system in the given external
electromagnetic field. Here L is the final classical Lagrangian from ([SB18].8?) and
([SB18].9). Note that, as explained in section 4.2.1, for reasons of consistency, we view
the external vector potential as a given background field, not as a dynamical variable.

Legendre transforming this Lagrangian with respect to the particle velocities ṙi and
adding a term as one would obtain when Legrendre transforming also with respect to

6We remind the reader that all the equations from [SB18] that we refer to explicitly are reproduced in
section 4.2.1.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

the external electromagnetic vector potential (see section 4.2.1 before ([SB18].12?)), we
obtain the total classical Hamiltonian

Hnew = H + m1φ(r1) + m2φ(r2) +
2γ + 1
2m1c2 φ(r1)p̄2

1 +
2γ + 1
2m2c2 φ(r2)p̄2

2

+ (2β− 1)
m1φ(r1)

2

2c2 + (2β− 1)
m2φ(r2)2

2c2 . (4.3.3)

Here H is the classical Hamiltonian from ([SB18].12?) and p̄i = pi − ei A⊥(ri) is the
kinetic momentum. Note that we dropped all terms that go beyond our order of
approximation.

4.3.2. Canonical quantisation and PZW transformation to a multipolar
Hamiltonian

Now, we canonically quantise this Hamiltonian and perform the PZW transformation
and electric dipole approximation used in [SB18] to arrive at the ‘multipolar’ Hamilto-
nian from ([SB18].23?). Neglecting terms of the form pi ·[d×B(R)]

mimjc2 as in ([SB18].22), in
our gravitational correction terms from (4.3.3) these transformations amount just to the
replacement p̄i → pi (compare section (4.2.1) from ([SB18].14?) to ([SB18].21?)). Hence
the multipolar Hamiltonian including the gravitational correction terms is

H[mult],new = H[mult] + m1φ(r1) + m2φ(r2) +
2γ + 1
2m1c2 p1 · φ(r1)p1 +

2γ + 1
2m2c2 p2 · φ(r2)p2

+ (2β− 1)
m1φ(r1)

2

2c2 + (2β− 1)
m2φ(r2)2

2c2 , (4.3.4)

where H[mult] is the multipolar Hamiltonian from ([SB18].23?).
Now that we are on the quantum level, we had to choose a symmetrised operator

ordering for the p2φ terms. We chose an ordering of the ‘obvious’ form p · φp. As
we have seen in section 3.4.3, this operator ordering also results from the description
of single quantum particles in an Eddington–Robertson PPN metric by our WKB-like
expansion of the Klein–Gordon equation, if we neglect terms proportional to ∆φ (which
vanish outside the matter generating the Newtonian potential φ, and thus are irrelevant
in physical situations concerning the outside of the generating matter distribution).

4.3.3. Introduction of centre of mass variables

We now want to express the correction terms in (Newtonian) centre of mass and relative
variables,

R =
m1r1 + m2r2

M
, r = r1 − r2 , (4.3.5)

P = p1 + p2 , p1,2 =
m1,2

M
P± pr , (4.3.6)
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4.3. Coupling the gravitational field to the particles

where M = m1 + m2. To this end, we expand the gravitational potential φ around the
centre of mass position R in linear order. In this approximation, we have m1φ(r1) +

m2φ(r2) = Mφ(R) and m1φ(r1)
2 + m2φ(r2)2 = Mφ(R)2. Furthermore using

p1,2 · φ(r1,2)p1,2 =
(m1,2

M
P± pr

)
· φ(r1,2)

(m1,2

M
P± pr

)
=

m2
1,2

M2 P · φ(r1,2)P±
m1,2

M
(P · φ(r1,2)pr + H.c.) + pr · φ(r1,2)pr (4.3.7)

and the relations φ(r1)− φ(r2) = r ·∇φ(R) as well as

1
m1

φ(r1) +
1

m2
φ(r2) =

(
1

m1
+

1
m2

)
φ(R) +

1
M

(
m2

m1
− m1

m2

)
r ·∇φ(R)

=
1
µ

φ(R)− m1 −m2

m1m2
r ·∇φ(R) (4.3.8)

where µ = m1m2
M is the system’s reduced mass, we arrive at the centre of mass Hamilto-

nian

H[com],new = H[com] + Mφ(R) + (2β− 1)
Mφ(R)2

2c2 +
2γ + 1
2Mc2 P · φ(R)P

+
2γ + 1
2µc2 p2

r φ(R) +
2γ + 1
2Mc2 [P · (r ·∇φ(R))pr + H.c.]

− 2γ + 1
2c2

m1 −m2

m1m2
pr · (r ·∇φ(R))pr , (4.3.9)

where H[com] is the centre of mass Hamiltonian from ([SB18].25?).
This can, similarly to [SB18], be brought into the form

H[com],new = HC,new + HA,new + HAL + HL + HX + Hderiv,new, (4.3.10)

where

HC,new = HC +
2γ + 1
2Mc2 P · φ(R)P +

(
M +

p2
r

2µc2

)
φ(R) + (2β− 1)

Mφ(R)2

2c2 (4.3.11)

describes the dynamics of the centre of mass and

HA,new = HA + 2γ
φ(R)

c2
p2

r
2µ
− 2γ + 1

2c2
m1 −m2

m1m2
pr · (r ·∇φ(R))pr (4.3.12)

describes the internal dynamics of the atom, both modified in comparison to [SB18].

Here, we have included the term 2γ
φ(R)

c2
p2

r
2µ into HA,new since it can be combined with

p2
r

2µ from HA into

p2
r

2µ

(
1 + 2γ

φ(R)

c2

)
=

(3)g−1
R (pr, pr)

2µ
, (4.3.13)

55



4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

giving the geometrically correctly expressed Newtonian internal kinetic energy, using
the metric square of the internal momentum. Here (3)g−1

R denotes the inverse of the
physical spatial metric at position R, as explained in section 2.2.

The terms HAL, HL, and HX containing, respectively, the atom-light interaction
terms, the external electromagnetic field energy, and the ‘cross terms’ are not changed
compared to [SB18]. The new final summand

Hderiv,new =
2γ + 1
2Mc2 [P · (r ·∇φ(R))pr + H.c.] (4.3.14)

is an additional central–internal ‘cross term’ involving the derivative ∇φ of the gravita-
tional potential.

Note that if we assumed that the gravitational potential φ vary slowly over the
extension of the atom, we could neglect the terms r ·∇φ(R). However, such terms might
turn out interesting for experimental applications employing large superpositions.

4.4. Coupling the gravitational to the electromagnetic field

Having determined the gravitational field’s coupling to the particles in the previous
section, we now turn to its coupling to the electromagnetic field, whose Lagrangian in
the presence of gravity we will compute in this section. In the following section 4.5 we
will then combine all couplings into a single Hamiltonian.

4.4.1. Solution of the gravitationally modified Maxwell equations

The electromagnetic part of the total action of our system, including interaction with
matter, is

Sem =
∫

dt d3x
√
−g
(
− ε0c2

4
Ftot.µνFµν

tot. + Jµ Atot.µ

)
, (4.4.1)

where g denotes the determinant of the matrix (gµν) of metric components, J = Jµ∂µ

is the four-current ‘density’ vector field, Atot. = Atot.µdxµ is the total (i.e. not de-
composed into internal and external parts) electromagnetic four-potential form, and
dAtot. = Ftot. = Ftot.µνdxµ ⊗ dxν = (∂µ Atot.ν − ∂ν Atot.µ)dxµ ⊗ dxν is the electromagnetic
field tensor. This is the standard action describing electromagnetism in a gravita-
tional field, which is obtained by minimally coupling the special-relativistic action for
electromagnetism [Jac98] to a general spacetime metric [MTW73; HE73].

Note that Jµ are the components of a proper vector field and not of a density; their
relation to the four-current density with components jµ, in terms of which the interaction
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part of the action takes the form
∫

dt d3x jµ Atot.µ, is given by

Jµ =
1√−g

jµ. (4.4.2)

The current density of our system of two particles is given by7

jµ(t, x) =
2

∑
i=1

eiδ
(3)(x− ri(t))ṙ

µ
i (t), (4.4.3)

where the dot denotes differentiation with respect to coordinate time t. The charge
density is

ρ =
1
c

j0. (4.4.4)

Similarly, the electric potential is

φel.,tot. = −cAtot.0. (4.4.5)

The Maxwell equations obtained by varying the action with respect to Atot.µ take the
form

∇µFµν
tot. = −

1
ε0c2 Jν (4.4.6)

in terms of the current vector field, or

∇µFµν
tot. = −

1
ε0c2

1√−g
jν (4.4.7)

in terms of the current density. It will be useful to consider the form

∇µFtot.µν = − 1
ε0c2

1√−g
jν (4.4.8)

instead.
We employ the ‘background Coulomb gauge’ condition

0 = ∇ · Atot. = δab∂a Atot.b, (4.4.9)

implying in particular δab∂aFtot.bµ = ∆Atot.µ where ∆ = δab∂a∂b denotes the ‘flat’ Eu-
clidean Laplacian defined by the background structures. In terms of the Helmholtz
decomposition, the gauge condition means A‖tot. = 0, i.e. Atot. = A⊥tot..

7For a single particle of charge q on an arbitrarily parametrised timelike worldline rµ(λ), the current
density is given by

jµ(x) = qc
∫

dλ
drµ

dλ
δ(4)

(
x− r(λ)

)
.

Parametrising by coordinate time and considering two particles, we arrive at the above expression.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

Divergence of the field strength tensor

Using the Christoffel symbols of the Eddington–Robertson PPN metric, which are
computed in full detail in appendix B, we can now calculate the components of the
divergence of the field strength tensor Ftot.. For the calculations, we remind the
reader that the components of the field tensor are of the orders Ftot.a0 = O(c−1) and
Ftot.ab = O(c0), as explained in section 2.4. The 0 component of the divergence now is
as follows:

∇µFtot.µ0 = gµρ(∂ρFtot.µ0 − Γσ
ρµFtot.σ0 − Γσ

ρ0Ftot.µσ)

= gaρ∂ρFtot.a0︸ ︷︷ ︸
=gab∂bFtot.a0+O(c−7)

− gµρΓa
ρµFtot.a0 − gµρΓσ

ρ0Ftot.µσ︸ ︷︷ ︸
=g00Γa

00Ftot.0a+gabΓ0
b0Ftot.a0+gabΓc

b0Ftot.ac+O(c−7)

=

(
1 + 2γ

φ

c2

)
δab∂bFtot.a0 − (γ− 1)δab ∂bφ

c2 Ftot.a0 + δab ∂bφ

c2 Ftot.0a − δab ∂bφ

c2 Ftot.a0

+
��

���
���:

0
δabγδc

b
∂tφ

c3 Ftot.ac + O(c−5)

=

(
1 + 2γ

φ

c2

)
∆Atot.0 − (γ + 1)δab ∂bφ

c2 (∂a Atot.0 − ∂0A⊥tot.a) + O(c−5)

= −1
c

(
1 + 2γ

φ

c2

)
∆φel.,tot. + (γ + 1)δab ∂bφ

c3 (∂aφel.,tot. + ∂t A⊥tot.a) + O(c−5)

(4.4.10)

Employing ‘three-vector’ notation as introduced in section 2.3, this is equivalent to

c∇µFtot.µ0 = −
(

1 + 2γ
φ

c2

)
∆φel.,tot. + (γ + 1)

∇φ

c2 · (∇φel.,tot. + ∂t A⊥tot.) + O(c−4),

(4.4.11)
or (multiplying by (1− 2γ

φ
c2 )) to

∆φel.,tot. = −
(

1− 2γ
φ

c2

)
c∇µFtot.µ0 + (γ + 1)

∇φ

c2 · (∇φel.,tot. + ∂t A⊥tot.) + O(c−4).

(4.4.12)
For the spatial components, we obtain

∇µFtot.µa = gµρ(∂ρFtot.µa − Γσ
ρµFtot.σa − Γσ

ρaFtot.µσ)

= g00∂0Ftot.0a + gbc∂cFba − gµρΓ0
ρµ︸ ︷︷ ︸

=O(c−3)

Ftot.0a − gµρΓb
ρµ︸ ︷︷ ︸

=(γ−1)δbc ∂cφ

c2 +O(c−4)

Ftot.ba

− gµρΓσ
ρaFtot.µσ︸ ︷︷ ︸
=g00Γb

0a Ftot.0b+gbcΓσ
ca Ftot.bσ+O(c−7)

+O(c−6)
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= −∂0Ftot.0a +

(
1 + 2γ

φ

c2

)
δbc∂cFtot.ba − (γ− 1)δbc ∂cφ

c2 Ftot.ba

− δbcΓd
caFtot.bd︸ ︷︷ ︸
=−2γδbc ∂cφ

c2 Ftot.ba+O(c−4)

+O(c−4)

= − 1
c2 ∂t(∂t A⊥tot.a + ∂aφel.,tot.) +

(
1 + 2γ

φ

c2

)
∆A⊥tot.a

+ (γ + 1)δbc ∂cφ

c2 (∂b A⊥tot.a − ∂a A⊥tot.b) + O(c−4). (4.4.13)

Multiplying by (1− 2γ
φ
c2 ), this is equivalent to

(∆− c−2∂2
t )A⊥tot.a =

(
1− 2γ

φ

c2

)
∇µFtot.µa +

1
c2 ∂a∂tφel.,tot.

− (γ + 1)δbc ∂cφ

c2 (∂b A⊥tot.a − ∂a A⊥tot.b) + O(c−4). (4.4.14)

The source terms and the explicit form of the Maxwell equations

We now consider the right hand side of the Maxwell equations (4.4.8), i.e. the source
term − 1

ε0c2
1√−g jν. Using

1√−g
= 1 + (3γ− 1)

φ

c2 + O(c−4) (4.4.15)

and the metric coefficients, we can easily express the source term in terms of the charge
and current densities: the 0 component is

− 1
ε0c2

1√−g
j0 = − 1

ε0c2
1√−g

(g00 j0 + g0a ja︸︷︷︸
=O(c−5)

)

=
1

ε0c
1√−g

(−g00ρ + O(c−6))

=
1

ε0c

(
1 + (3γ + 1)

φ

c2

)
ρ + O(c−5), (4.4.16)

and the spatial components are

− 1
ε0c2

1√−g
ja = −

1
ε0c2

1√−g
(gab jb + ga0 j0︸︷︷︸

=O(c−4)

)

= − 1
ε0c2

(
1 + (γ− 1)

φ

c2

)
δab jb + O(c−6). (4.4.17)
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

Using the source terms (4.4.16), (4.4.17) and the re-arranged field strength divergences
(4.4.12), (4.4.14), the Maxwell equations (4.4.8) are equivalent to the following equations:

∆φel.,tot. = −
1
ε0

(
1 + (γ + 1)

φ

c2

)
ρ

+ (γ + 1)
∇φ

c2 · (∇φel.,tot. + ∂t A⊥tot.) + O(c−4) (4.4.18a)

(∆− c−2∂2
t )A⊥tot.a = −

1
ε0c2 δab jb +

1
c2 ∂a∂tφel.,tot.

− (γ + 1)δbc ∂cφ

c2 (∂b A⊥tot.a − ∂a A⊥tot.b) + O(c−4) (4.4.18b)

Now, as done in [SB18], we split the total potentials (φel.,tot., A⊥tot.) into internal
and external parts, both satisfying the gauge condition, where the internal potentials
(φel.,A⊥) satisfy the Maxwell equations with the internal charge and current densities
as sources, and the external potentials (φel.,ext., A⊥) the vacuum Maxwell equations.
Note that the internal electric potential does not carry a subscript ‘int.’ or similar, as
opposed to the external one. Similarly, we write Ftot.µν = Fµν + Fµν, where F = dA is
the internal and F = dA is the external field tensor (employing the obvious notation
A0 = − 1

c φel., A0 = − 1
c φel.,ext.).

Solution of the internal Maxwell equations

From (4.4.18), the Maxwell equations for the internal potentials are as follows:

∆φel. = −
1
ε0

(
1 + (γ + 1)

φ

c2

)
ρ + (γ + 1)

∇φ

c2 · (∇φel. + ∂tA⊥) + O(c−4)

(4.4.19a)

(∆− c−2∂2
t )A⊥a = − 1

ε0c2 δab jb +
1
c2 ∂a∂tφel.

− (γ + 1)δbc ∂cφ

c2 (∂bA⊥a − ∂aA⊥b ) + O(c−4) (4.4.19b)

We will now solve (4.4.19) perturbatively in a formal expansion in c−2. Expanding
the potentials as φel. = φ

(0)
el. + c−2φ

(2)
el. + O(c−4) and A⊥ = A⊥(0) + c−2A⊥(2) + O(c−4),

the lowest orders of the Poisson equation for φel. read

∆φ
(0)
el. = − 1

ε0
ρ, (4.4.20a)

∆φ
(2)
el. = − 1

ε0
(γ + 1)φρ + (γ + 1)∇φ · (∇φ

(0)
el. + ∂tA⊥(0)), (4.4.20b)
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4.4. Coupling the gravitational to the electromagnetic field

and the lowest orders of the wave equation for A⊥ are

(∆− c−2∂2
t )A

⊥(0)
a = 0, (4.4.21a)

(∆− c−2∂2
t )A

⊥(2)
a = − 1

ε0
δab jb + ∂a∂tφ

(0)
el. − (γ + 1)δbc ∂cφ

c2 (∂bA
⊥(0)
a − ∂aA⊥(0)b ).

(4.4.21b)

Being the usual, ‘non-gravitational’ Poisson equation, (4.4.20a) gives

φ
(0)
el. = φel.,ng , (4.4.22)

where φel.,ng is the internal electric potential solution in the absence of gravity as given
by ([SB18].A1).

For the wave equation (4.4.19b) we are interested in purely retarded solutions without
any additional radiative terms, since the internal potentials shall correspond to just
‘what is generated by the particles’. Therefore, (4.4.21a) directly implies A⊥(0) = 0.

Thus, (4.4.21b) reduces to the ‘non-gravitational’ wave equation for the potential
A⊥ng, but applied to c−2A⊥(2), implying c−2A⊥(2) = A⊥ng, where A⊥ng is the non-
gravitational retarded solution, expanded to lowest non-vanishing order in c−1, as
given by ([SB18].A3). Hence we have

A⊥ = A⊥ng + O(c−4) = O(c−2). (4.4.23)

Finally, solving (4.4.20b) directly gives

φ
(2)
el. (x, t) =

γ + 1
4πε0

∫
d3x′

φ(x′, t)ρ(x′, t)
|x− x′| − γ + 1

4π

∫
d3x′

1
|x− x′|

(
∇φ ·∇φ

(0)
el.

)
(x′, t).

(4.4.24)

For later convenience, we will now compute the interaction integral − 1
2

∫
d3x ρφel..

We suppress time dependence in the notation. Using the explicit form of the charge
density, ρ(x) = e1δ(3)(x − r1) + e2δ(3)(x − r2), and dropping infinite self-interaction
terms, we obtain

−1
2

∫
d3x ρφel. = −

e1e2

4πε0r

(
1 + (γ + 1)

φ(r1) + φ(r2)

2c2

)
+

γ + 1
8πc2

∫
d3x

(
e1

|x− r1|
+

e2

|x− r2|

)
∇φ ·∇φ

(0)
el.︸ ︷︷ ︸

=
ε0(γ+1)

2c2

∫
d3x φ

(0)
el. ∇φ·∇φ

(0)
el.

+O(c−4), (4.4.25)
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

where we used the explicit form of the lowest-order potential φ
(0)
el. . For the last integral,

partial integration gives∫
d3x φ

(0)
el. ∇φ ·∇φ

(0)
el. = −

∫
d3x φ

(0)
el. ∇ ·

(
φ
(0)
el. ∇φ

)
= −

∫
d3x φ

(0)
el. ∇φ

(0)
el. ·∇φ−

∫
d3x

(
φ
(0)
el.

)2
∆φ, (4.4.26)

implying ∫
d3x φ

(0)
el. ∇φ ·∇φ

(0)
el. = −1

2

∫
d3x

(
φ
(0)
el.

)2
∆φ. (4.4.27)

In the following, we will neglect this term: due to the Newtonian field equation, ∆φ

is non-vanishing only inside the matter generating the gravitational potential, and
φ
(0)
el. is negligibly small there for an atom situated outside of this matter (e.g. in a

quantum-optical experiment outside of the earth). Thus, the relevant part of the above
interaction integral is just

− 1
2

∫
d3x ρφel. = −

e1e2

4πε0r

(
1 + (γ + 1)

φ(r1) + φ(r2)

2c2

)
+ O(c−4). (4.4.28)

The external Maxwell equations

We will now consider the Maxwell equations for the external potentials. Since we
assume the absence of external charges, the Poisson equation for φel.,ext. reads as
follows:

∆φel.,ext. = (γ + 1)
∇φ

c2 · (∇φel.,ext. + ∂t A⊥) + O(c−4) (4.4.29)

Solving this equation perturbatively as for the internal potentials, we obtain the solution

φel.,ext.(x, t) = −γ + 1
4πc2

∫
d3x′

1
|x− x′| (∇φ · ∂t A⊥)(x′, t) + O(c−4), (4.4.30)

expressed solely in terms of the external vector potential. In fact, we will not need this
explicit form of the potential, but just the expansion order

φel.,ext. = O(c−2). (4.4.31)
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4.4. Coupling the gravitational to the electromagnetic field

Now considering the wave equation for the vector potential A⊥, which due to the
absence of external currents and the above result on φel.,ext. reads

(∆− c−2∂2
t )A⊥a =

1
c2 ∂a∂tφel.,ext. − (γ + 1)δbc ∂cφ

c2 (∂b A⊥a − ∂a A⊥b ) + O(c−4)

= −(γ + 1)δbc ∂cφ

c2 (∂b A⊥a − ∂a A⊥b ) + O(c−4), (4.4.32)

and employing a further expansion A⊥ = A⊥(0) + c−2A⊥(2) + O(c−4), we obtain in
lowest order

(∆− c−2∂2
t )A⊥(0) = 0. (4.4.33)

Differently to the internal case, we now allow for radiative solutions8, thus not getting
A⊥(0) = 0. However, we can conclude that ∂a A⊥ = O(c−1∂t A⊥). Treating ∂t A⊥, which
corresponds (up to a gravitational correction factor of order unity) to the external
electric field, as being of order c0, we thus have

∂a A⊥ = O(c−1). (4.4.34)

4.4.2. Computation of the electromagnetic Lagrangian

We will now compute the electromagnetic Lagrangian

Lem =
∫

d3x
(
− ε0c2

4
√
−g Ftot.µνFµν

tot. + jµ Atot.µ

)
, (4.4.35)

which follows from the action (4.4.1).
The internal kinetic Maxwell term is

− ε0c2

4

∫
d3x

√
−gFµνFµν

= − ε0c2

2

∫
d3x

√
−g ∂µAνFµν

(P.I.) =
ε0c2

2

∫
d3x

√
−gAν∇µFµν − ε0c2

2

∫
d3x ∂0(

√
−gAνF 0ν). (4.4.36)

8At the end of the day, the idea is to put an atom into a laser beam.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

The first integral on the right-hand side is equal to − 1
2

∫
d3xAν jν by the internal part

of the general Maxwell equations (4.4.7), and for the second integral we obtain

− ε0c2

2

∫
d3x ∂0(

√
−gAνF 0ν)

= − ε0c2

2

∫
d3x ∂0(

√
−gAaF 0a)

(using F 0a = g00gabF0b + O(c−5))

= − ε0c2

2

∫
d3x ∂0

(√
−g g00gabAa(∂0Ab − ∂bA0)

)
+ O(c−4)

= − ε0

2

∫
d3x ∂t

(√
−g g00gabAa(∂tAb + ∂bφel.)

)
+ O(c−4)

(P.I.) = − ε0

2

∫
d3x ∂t

(√
−g g00gabAa∂tAb

)
+

ε0

2

∫
d3x ∂t

(
∂b

(√
−g g00gab

)
︸ ︷︷ ︸

=O(c−2)

Aaφel.

)

+
ε0

2

∫
d3x ∂t

(√
−g g00 gab∂bAa︸ ︷︷ ︸

=(1+2γ
φ

c2 )δ
ab∂bA⊥a +O(c−4)=O(c−4)

φel.

)
+ O(c−4)

= O(c−4), (4.4.37)

where in the partial integration step we used the gauge condition (4.4.9) and that
Aa is of order c−2 according to (4.4.23). Thus, the ‘purely internal’ contribution of
electromagnetism to the Lagrangian, including the explicit coupling term of the internal
potential to the current, is

Lem,int. =
∫

d3x
(
− ε0c2

4
√
−gFµνFµν + jµAµ

)
=

1
2

∫
d3x jµAµ + O(c−4)

=
1
2

∫
d3x (j ·A⊥ − ρφel.) + O(c−4). (4.4.38)

To compute the purely external and mixed external-internal contributions to the
electromagnetic Lagrangian, we first explicitly compute the kinetic Maxwell term in
terms of the potentials. Inserting the explicit form of the PPN metric, we obtain

− ε0c2

4
√
−g Ftot.µνFµν

tot. =
ε0

2
√
−g
[
− g00gab(∂t Atot.a + ∂aφel.,tot.)(∂t Atot.b + ∂bφel.,tot.)

− c2(gabgcd − gadgcb) ∂a Atot.c ∂b Atot.d

]
+ O(c−4)
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4.4. Coupling the gravitational to the electromagnetic field

=
ε0

2

[ (
1− (γ + 1)

φ

c2

)
(∂t Atot. +∇φel.,tot.)

2

− c2
(

1 + (γ + 1)
φ

c2

)
(∇× Atot.)

2
]
+ O(c−4). (4.4.39)

Note that according to (4.4.23) and (4.4.34) we have ∇× Atot. = O(c−1), such that the
second term in the square brackets does indeed include terms up to (and including)
order c−2, such that the total given expansion order makes sense. We also recall that, as
introduced in section 2.3, ∇× Atot. denotes the ‘component-wise curl’ of Atot., which
is a well-defined geometric operation (i. e. independent of coordinates) once we have
introduced the background structures.

The internal-internal term of (4.4.39) was considered above in (4.4.38). The purely
external term gives

Lem,ext. = −
ε0c2

4

∫
d3x

√
−g FµνFµν

=
ε0

2

∫
d3x

[ (
1− (γ + 1)

φ

c2

)(
(∂t A⊥)2 + 2∂t A⊥ · ∇φel.,ext.︸ ︷︷ ︸

(4.4.31)
= O(c−2)

+ (∇φel.,ext.)
2︸ ︷︷ ︸

(4.4.31)
= O(c−4)

)
− c2

(
1 + (γ + 1)

φ

c2

)
(∇× A⊥)2

]
+ O(c−4)

(using P.I., (4.4.9))

=
ε0

2

∫
d3x

[ (
1− (γ + 1)

φ

c2

)
(∂t A⊥)2

− c2
(

1 + (γ + 1)
φ

c2

)
(∇× A⊥)2

]
+ O(c−4). (4.4.40)

For the external-internal mixed term plus the interaction of the external potential
with the current, we obtain

Lem,ext.-int. =
∫

d3x jµ Aµ −
ε0c2

2

∫
d3x

√
−gFµνFµν

=
∫

d3x (j · A⊥ − ρφel.,ext.)

+ ε0

∫
d3x

[ (
1− (γ + 1)

φ

c2

)
(∂tA⊥ +∇φel.) · (∂t A⊥ +∇φel.,ext.)

− c2
(

1 + (γ + 1)
φ

c2

)
(∇×A⊥) · (∇× A⊥)

]
+ O(c−4)
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(using (4.4.23), (4.4.31))

=
∫

d3x (j · A⊥ − ρφel.,ext.)

+ ε0

∫
d3x

[
(∂tA⊥) · (∂t A⊥)

− c2
(

1 + (γ + 1)
φ

c2

)
(∇×A⊥) · (∇× A⊥)

+

(
1− (γ + 1)

φ

c2

)
∇φel. · ∂t A⊥ +∇φel. ·∇φel.,ext.

]
+ O(c−4)

(using P.I., (4.4.9), (4.4.19a))

=
∫

d3x j · A⊥ + ε0

∫
d3x

[
(∂tA⊥) · (∂t A⊥)

− c2
(

1 + (γ + 1)
φ

c2

)
(∇×A⊥) · (∇× A⊥)

]
+ ε0

∫
d3x (γ + 1) φ

(0)
el.

∇φ

c2 · ∂t A⊥ + O(c−4). (4.4.41)

Following appendix B of [SB18], we will neglect the second integral in this expression
since it is related to formally diverging backreaction terms.

Adding the Lagrangians (4.4.38), (4.4.40) and (4.4.41), the total post-Newtonian
electromagnetic Lagrangian (with the above-mentioned neglections following [SB18])
reads

Lem =
1
2

∫
d3x (j ·A⊥ − ρφel.) +

∫
d3x j · A⊥

+
ε0

2

∫
d3x

[ (
1− (γ + 1)

φ

c2

)
(∂t A⊥)2 − c2

(
1 + (γ + 1)

φ

c2

)
(∇× A⊥)2

]
+ ε0

∫
d3x (γ + 1) φ

(0)
el.

∇φ

c2 · ∂t A⊥ + O(c−4). (4.4.42)

We remind the reader that, as for the non-gravitational calculation discussed in sec-
tion 4.2.1, A⊥ is treated as a given external field that appears in the Lagrangian, not
a dynamical variable. Inserting the internal magnetic potential (4.4.23) and using the
electric interaction integral (4.4.28) computed above, for the internal term we obtain
(dropping infinite self-interaction terms)

1
2

∫
d3x (j ·A⊥ − ρφel.) = −

e1e2

4πε0r

(
1 + (γ + 1)

φ(r1) + φ(r2)

2c2

)
+

e1e2

8πε0c2

[
ṙ1 · ṙ2

r
+

(ṙ1 · r)(ṙ2 · r)
r3

]
+ O(c−4). (4.4.43)
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4.5. The total Hamiltonian including all interactions

In this section we collect all previous findings and combine them into the total Hamilto-
nian that characterises the dynamics of our two-particle system that is now also exposed
to a non-trivial gravitational field. We will see that the Hamiltonian suffers various
‘corrections’ as compared to the gravity-free case, and that these terms acquire an
intuitive interpretation if re-expressed in terms of the physical spacetime metric g.

4.5.1. Computation of the Hamiltonian

We will now compute the total Hamiltonian describing the atom in external electro-
magnetic and gravitational fields by repeating the calculation from section 4.3 while
including the ‘gravitational corrections’ to electromagnetism obtained in section 4.4.

Comparing the gravitationally corrected electromagnetic Lagrangian as given by
(4.4.42), (4.4.43) to the one without gravitational field (φ = 0), we see that (at our
order of approximation) the differences consist of new prefactors involving φ in the
external electromagnetic term and the internal Coulomb interaction term, as well as
an additional term involving the derivative ∇φ of the gravitational potential (last line
of (4.4.43)). Thus, when calculating the Hamiltonian, we have to take care of these
changes compared to the discussion of section 4.3.

The classical Hamiltonian

As explained in section 4.2.1, although the external field is not treated as a dynamical
variable, when Legendre transforming the Lagrangian in order to compute a Hamilto-
nian we will add a term corresponding to the energy of the external field. We also use
the notation Π⊥ for the ‘would-be canonical momentum’ conjugate to the external field
(i.e. the canonical momentum if A⊥ were a dynamical variable). For our Lagrangian,
this ‘would-be canonical momentum’ is

Π⊥ =
δLem

δ(∂t A⊥)

= ε0

(
1− (γ + 1)

φ

c2

)
∂t A⊥ + ε0(γ + 1)

(
φ
(0)
el.

∇φ

c2

)⊥
+ O(c−4). (4.5.1)

Inverting this, we get

∂t A⊥ =

(
1 + (γ + 1)

φ

c2

)
Π⊥

ε0
− (γ + 1)

(
φ
(0)
el.

∇φ

c2

)⊥
+ O(c−4). (4.5.2)
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

Expressing the first part of the external electromagnetic Lagrangian (4.4.40) in terms of
this, we have

ε0

2

∫
d3x

(
1− (γ + 1)

φ

c2

)
(∂t A⊥)2

=
ε0

2

∫
d3x

(
Π⊥

ε0
− (γ + 1) φ

(0)
el.

∇φ

c2

)
· (∂t A⊥) + O(c−4)

=
ε0

2

∫
d3x

(
1 + (γ + 1)

φ

c2

)
(Π⊥/ε0)

2 −
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 ·Π
⊥ + O(c−4).

(4.5.3)

Furthermore, we have∫
d3x Π⊥ · ∂t A⊥ = ε0

∫
d3x

(
1 + (γ + 1)

φ

c2

)
(Π⊥/ε0)

2

−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 ·Π
⊥ + O(c−4). (4.5.4)

Thus, the Hamiltonian for the external electromagnetic field and the external-internal
interaction is

Hem,ext.,ext.-int. =
∫

d3x Π⊥ · ∂t A⊥ − Lem,ext. − Lem,ext.-int.

=
∫

d3x Π⊥ · ∂t A⊥ − Lem,ext.

−
∫

d3x j · A⊥ − ε0

∫
d3x (γ + 1) φ

(0)
el.

∇φ

c2 · ∂t A⊥︸ ︷︷ ︸
=Π⊥/ε0+O(c−2)

+O(c−4)

=
ε0

2

∫
d3x

(
1 + (γ + 1)

φ

c2

) [
(Π⊥/ε0)

2 + c2(∇× A⊥)2
]

−
∫

d3x j · A⊥ −
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 ·Π
⊥ + O(c−4). (4.5.5)

When including the gravitational corrections to electromagnetism, the final total
classical Hamiltonian thus will differ from the one without these corrections, as given
by (4.3.3) and ([SB18].12?), in the following points:

• The external ‘field energy’
ε0

2

∫
d3x

[
(Π⊥/ε0)

2 + c2(∇× A⊥)2
]

gains a prefactor(
1 + (γ + 1) φ

c2

)
,

• the Coulomb term gains a prefactor
(

1 + (γ + 1) φ(r1)+φ(r2)
2c2

)
, and
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• there is an additional term

−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 ·Π
⊥. (4.5.6)

Canonical quantisation, PZW transformation, and introduction of centre of mass
coordinates

We can now canonically quantise this classical Hamiltonian and perform the PZW

transformation precisely as in the case without the gravitational corrections to electro-
magnetism – we just have to see how the correction terms transform. The resulting
final multipolar Hamiltonian differs from the one without these corrections, as given
by (4.3.4) and ([SB18].23?), in the following points:

• The transformed external ‘field energy’
ε0

2

∫
d3x

[
(Π̃
⊥
+P⊥d )2

ε2
0

+ c2(∇× A⊥)2

]
gains a prefactor

(
1 + (γ + 1) φ

c2

)
,

• the Coulomb term gains a prefactor
(

1 + (γ + 1) φ(r1)+φ(r2)
2c2

)
, and

• there are additional terms

−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 · (Π̃
⊥
+P⊥d ). (4.5.7)

For the Coulomb term, expanding φ to linear order, we have

φ(r1) + φ(r2) = 2φ(R) + (r1 − R + r2 − R) ·∇φ(R)

= 2φ(R) +
m2 −m1

M
r ·∇φ(R). (4.5.8)

Using this, we can rewrite the corrected Coulomb term as

−
(

1 + (γ + 1)
φ(r1) + φ(r2)

2c2

)
e2

4πε0r
= − e2

4πε0r

(
1 + (γ + 1)

φ(R)

c2

)
− γ + 1

c2
e2

8πε0r
m2 −m1

M
r ·∇φ(R) (4.5.9)

in terms of centre of mass and relative coordinates.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

The total Hamiltonian

Putting everything together, we arrive at the total Hamiltonian describing our simple
atomic system in external electromagnetic and post-Newtonian gravitational fields.
Here it is, in its full glory:

H[com],final = HC,final + HA,final + HAL,final + HL,final + HX + Hderiv,new + O(c−4)

(4.5.10a)

HC,final =
P2

2M

[
1− 1

Mc2

(
p2

r
2µ
− e2

4πε0r

)]
+

[
M +

1
c2

(
p2

r
2µ
− e2

4πε0r

)]
φ(R)

− P4

8M3c2 +
2γ + 1
2Mc2 P · φ(R)P + (2β− 1)

Mφ(R)2

2c2 (4.5.10b)

HA,final =

(
1 + 2γ

φ(R)

c2

)
p2

r
2µ
−
(

1 + γ
φ(R)

c2

)
e2

4πε0r

−
m3

1 + m3
2

M3
p4

r
8µ3c2 −

e2

4πε0

1
2µMc2

(
pr ·

1
r

pr + pr · r
1
r3 r · pr

)
− 2γ + 1

2c2
m1 −m2

m1m2
pr · (r ·∇φ(R))pr −

γ + 1
c2

e2

8πε0r
m2 −m1

M
r ·∇φ(R)

(4.5.10c)

HAL,final =

(
1 + (γ + 1)

φ(R)

c2

)
Π̃
⊥
(R)

ε0
· d +

1
2M
{P · [d× B(R)] + H.c.}

− m1 −m2

4m1m2
{pr · [d× B(R)] + H.c.}

+
1

8µ
(d× B(R))2 +

1
2ε0

∫
d3x

(
1 + (γ + 1)

φ

c2

)
P⊥d

2
(x, t)

−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 · (Π̃
⊥
+P⊥d ) (4.5.10d)

HL,final =
ε0

2

∫
d3x

(
1 + (γ + 1)

φ

c2

) [
(Π̃
⊥/ε0)

2 + c2(∇× A⊥)2
]

(4.5.10e)

HX = − (P · pr)
2

2M2µc2 +
e2

4πε0r
(P · r/r)2

2M2c2

+
m1 −m2

2µM2c2

{
(P · pr)p2

r /µ− e2

8πε0

[
1
r

P · pr +
1
r3 (P · r)(r · pr) + H.c.

]}
(4.5.10f)

Hderiv,new =
2γ + 1
2Mc2 [P · (r ·∇φ(R))pr + H.c.] (4.5.10g)
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4.5. The total Hamiltonian including all interactions

Here, we have included the term −γ 1
c2

e2

4πε0r φ(R) (from the ‘corrections’ to the Coulomb
term) into HA,final (instead of into HC,final) since it can be combined with the original
Coulomb term from HA into

− e2

4πε0r

(
1 + γ

φ(R)

c2

)
= − e2

4πε0

√
(3)gR(r, r)

, (4.5.11)

i.e. a Coulomb term expressed with the correct, metric relative distance.
To correctly interpret the atom–light interaction Hamiltonian (4.5.10d), one has to

keep in mind that the field variables Π̃⊥ = Π⊥ −P⊥ and B = ∇× A⊥ appearing in it
do not refer to an orthonormal frame in the physical spacetime metric g in the presence
of gravitational fields, but are related to components of the electromagnetic field tensor
in the coordinate frame – or, more geometrically speaking, to an inertial frame with
respect to the background Minkowski metric. This issue will be discussed in more
detail in section 4.5.3.

Since the cross terms HX are the same as in [SB18], we could now introduce new
canonical variables Q, q, p literally as in ([SB18].26) to eliminate these cross terms.
Since the gravitational correction terms are of order O(c−2), for them this canonical
transformation would just amount to the replacements R → Q, r → q, pr → p at our
order of approximation. Since it will not alter the following discussion, we will not
perform this coordinate change in order to avoid adding an extra layer of potentially
confusing notation.

4.5.2. The system as a composite point particle

We now take another look at the central and the internal Hamiltonian (4.5.10b), (4.5.10c),
where we rewrite the latter in the form

HA,final =
(3)g−1

R (pr, pr)

2µ
− e2

4πε0

√
(3)gR(r, r)

−
m3

1 + m3
2

M3
p4

r
8µ3c2 −

e2

4πε0

1
2µMc2

(
pr ·

1
r

pr + pr · r
1
r3 r · pr

)
− 2γ + 1

2c2
m1 −m2

m1m2
pr · (r ·∇φ(R))pr −

γ + 1
c2

e2

8πε0r
m2 −m1

M
r ·∇φ(R)

(4.5.12)

by combining the gravitational correction terms which do not involve the potential
derivative ∇φ into metrically defined kinetic energy and Coulomb terms as in (4.3.13),
(4.5.11).
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

Now comparing the central Hamiltonian HC,final (4.5.10b) to the Hamiltonian of a
single point particle of mass m in the PPN metric,

Hpoint(P, R; m) =
P2

2m
+ mφ(R)− P4

8m3c2 +
2γ + 1
2mc2 P · φ(R)P + (2β− 1)

mφ(R)2

2c2 ,
(4.5.13)

we see that the central Hamiltonian has, up to (and including) O(c−2), exactly this
form, with the mass m replaced by M +

HA,final
c2 ,

HC,final = Hpoint

(
P, R; M +

HA,final

c2

)
, (4.5.14)

as could be naively expected from mass–energy equivalence. Thus, starting from first
principles, we have shown that the system behaves as a ‘composite point particle’ whose
(inertial as well as gravitational) mass is comprised of the rest masses of the constituent particles
as well as the internal energy.

Note that this conclusion depends on the identification of terms as being ‘kinetic’ and
‘interaction’ energies, which in turn depends on the metric structure in their expressions.
Had we not rewritten the internal kinetic energy (4.3.13) and the Coulomb interaction
(4.5.11) in terms of the physical metric g, but included only the corresponding terms
p2

r
2µ and − e2

4πε0r with respect to the background metric into the internal Hamiltonian,
the above conclusion could not have resulted. Rather, having additional terms in the
central Hamiltonian, to obtain it in a ‘composite particle’ point of view we would have
had to replace the inertial mass in (4.5.13) by M + HA/c2 and the gravitational mass

by M + (2γ + 1) p2
r

2µc2 − (γ + 1) e2

4πε0rc2 = M + HA
c2 + γ

(
2 p2

r
2µc2 − e2

4πε0rc2

)
, which one could

have erroneously interpreted as a violation of some naive form of the weak equivalence
principle. But, clearly, such a conclusion would be premature, for it is based on the
identification of terms – like inertial and gravitational mass – that is itself ambiguous.
That ambiguity is here seen as a dependence on the background structure, which is
used to define distances of positions and squares of momenta. Once these quantities
are measured with the physical metric g, ambiguities and apparent conflicts with naive
expectations disappear. That point has also been made in [ZRP19].

The quantities ~p′2 and r′ entering the Hamiltonian in [ZRP19, eq. (18)], which are,
in the language of [ZRP19], the square of the internal momentum and the distance
‘in the CM rest frame’, are nothing but the geometric expressions (3)g−1

R (pr, pr) and√
(3)gR(r, r) from above, measured using the physical metric of space. The internal

Hamiltonian (4.5.12) thus consists of kinetic and Coulomb interaction energies in terms
of the physical geometry, in agreement with the expressions from [ZRP19], as well
as the expected special-relativistic and ‘Darwin’ corrections, and terms involving the
gravitational potential’s derivative9.

9Since all these corrections are themselves of order 1/c2, the deviations of the physical from the flat
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4.5. The total Hamiltonian including all interactions

4.5.3. The electromagnetic expressions in terms of components with respect
to orthonormal frames

The expressions derived above in (4.5.10) include components of the external electro-
magnetic field with respect to coordinates which, albeit not chosen arbitrarily, have
no direct metric significance. We recall that we used coordinates that are adapted to
the background structure (η, u), in the sense that u = ∂/∂t and η = ηµν dxµ ⊗ dxν with
(ηµν) = diag(−1, 1, 1, 1). The corresponding local reference frames (∂µ = ∂/∂xµ)µ=0,1,2,3

are orthonormal with respect to the background metric η, but not with respect to the
physical metric g.

In this section we will re-express our findings in terms of components with respect
to g-orthonormal frames, which we will call the ‘physical components’, as opposed to
the ‘coordinate components’ used so far. We stress that, despite this terminology, there
is nothing wrong or ‘unphysical’ with representing fields in terms of components of
non-orthonormal bases, as long as the metric properties are spelled out at the same time.
Yet it is clearly convenient to be able to read off metric properties, which bear direct
metric significance, from the expressions involving the components alone, without at
the same time having to recall the values of the metric components as well.

Electromagnetic quantities in non-orthonormal and orthonormal frames

At first, we will discuss the meaning of several ‘electromagnetic quantities’ in non-
orthonormal and orthonormal frames in general, before specialising to the case of our
PPN metric and considering the terms in our Hamiltonian. Suppose that we are given
our usual ‘background’ coordinate system (x0, xa), that is possibly non-orthonormal
with respect to the physical spacetime metric g, as well as a time- and space-oriented
orthonormal frame / ‘tetrad’ (eµ)µ=0,1,2,3 for the physical metric, where from now on
underlined indices refer to components with respect to the tetrad. We write the tetrad
fields in terms of the coordinate basis fields, and vice versa, as

eµ = eν
µ ∂ν , ∂µ = eν

µ eν , (4.5.15)

where the matrices of coefficients (eν
µ) and (eν

µ) are inverses of each other. Since the
tetrad is orthonormal, i.e. the tetrad components gµν of the metric are numerically equal
to the components ηµν of the Minkowski metric in a Lorentz frame, we can express the
coordinate components of the metric as

gµν = e
ρ
µ eσ

ν gρσ =
3

∑
ρ,σ=0

e
ρ
µ eσ

ν ηρσ . (4.5.16)

metric do not enter here.
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

We make the further assumption that at any point, time and space as defined by both
bases be the same, i.e. that

span{e0} = span{∂0}, span{e1, e2, e3} = span{∂1, ∂2, ∂3}, (4.5.17)

i.e. that the coefficients ea
0, e0

a, e0
a, ea

0, g0a, g0a all vanish (which will in our later application
to the electromagnetic Hamiltonian be satisfied to our order of expansion). This also
implies that

√−g00 = e0
0 = 1/ e0

0.
Now we can consider how electromagnetic quantities are related to the components of

the field tensor in the two different frames. The electric and magnetic field components
with respect to the tetrad (which we call, as introduced above, the ‘physical’ field
components) are

Ephys.a = cFa0 , Ba
phys. =

(3) ε̂abcFbc (4.5.18)

in terms of the tetrad components of the field tensor, where (3) ε̂abc is the three-
dimensional totally antisymmetric symbol. Note that although written in component
form, these formulae have an invariant geometric meaning that depends only on being
given the time direction span{∂0} = span{e0} and the (physical) metric g: the electric
field is simply the spatial10 one-form obtained by inserting the unit future-pointing time
direction vector e0 into the two-form F (in its second argument), projecting onto space,
and multiplying with c. Considering the magnetic field, we recall the well-known fact
that we can view (3) ε̂abc as the components of a spatial tensor density (3) ε̂ of weight11

+1 which is defined by demanding that its components in any positively oriented frame
are given by the totally antisymmetric symbol. Thus, the magnetic field is a contraction
of this tensor density (3) ε̂ and the (spatially projected) field tensor (which is a proper
tensor, i.e. a density of weight 0), i.e. itself a spatial vector density of weight +1.

This means that what one might call the ‘coordinate components’ of the magnetic
field, namely the expressions

Ba
coord. =

(3) ε̂abcFbc (4.5.19)

where (3) ε̂abc is the totally antisymmetric symbol, are in fact the components with respect
to the coordinate frame of the same geometric object as for the ‘physical components’,
namely the above tensor density. Thus, the components are related by the usual
transformation formula for tensor densities, i.e.

Ba
phys. = det(ed

c ) · e
a
b Bb

coord. =
1√
(3)g

ea
b Bb

coord. , (4.5.20)

10Here ‘spatial’ means geometric objects (i.e. tensor densities) defined on the ‘spatial’ submanifolds
x0 = const., which integrate the spatial distribution span{e1, e2, e3} = span{∂1, ∂2, ∂3}.

11A more well-known fact is probably that the covariant totally antisymmetric symbol is a tensor density
of weight −1; that the contravariant symbol may be considered a density of weight +1 one sees in
exactly analogous fashion.
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4.5. The total Hamiltonian including all interactions

where (3)g denotes the determinant of the matrix of coordinate components of the
spatial metric. Note that due to the numerical identity (3) ε̂abc = (3)εabc, where (3)εabc are
the ‘index-raised’ components of the background spatial volume form as introduced in
section 2.3, the components Ba

coord. are, in fact, numerically equal to the components of
the ‘three-vector’ B = ∇× A⊥ used in the previous sections (although we treated B as
a different geometric object there, namely as a spatial vector field instead of a spatial
vector field density). The interpretation of the magnetic field as a vector density also
goes nicely with an intuitive point of view, namely that of the field representing the
spatial density of magnetic field lines.

Expressing the electric field’s tetrad components in terms of the coordinate compon-
ents of the field tensor, we directly obtain

Ephys.a = eb
a e0

0 cFb0 =
1√−g00

eb
a cFb0 . (4.5.21)

One could interpret 1√−g00
cFb0 =: Ecoord.b as the ‘coordinate components’ of the electric

field (interpreted as a spatial one-form as discussed above); however, we will not make
much use of this notation.12

Next, we will consider electric dipole moments and (electric) polarisation. Imagining
an ideal dipole in the usual way as arising in a limit process from two separated
opposite point charges getting closer and closer, with their respective charges growing
accordingly, the resulting dipole moment is to be a proper spatial vector (and not a
density of non-zero weight): its magnitude is an invariant (i. e. frame-independent)
quantity, namely the product of charge and distance of the two particles, held constant
in the limit process, and its direction is the limit of the direction ‘from one particle to

12In index-free notation, we can express the electric and magnetic fields as follows. The electric field is

E = −c ιe0 F

where ι denotes the interior product of a vector field and a differential form, i.e. insertion of the vector
field into the first argument of the form. Note that E is spatial due to the antisymmetry of F.

The magnetic field can be expressed as

B = (3)ṽol ·
[
(3)∗̃

(
Pr⊥(F)

)]]̃
.

The objects occurring in this formula are the following: Pr⊥ denotes the orthogonal projection map
onto three-space span{e0}⊥, extended to arbitrary tensors. The operator (3)∗̃ is the spatial Hodge star
with respect to the physical spatial metric (3)g. A superscript ]̃ denotes the natural isomorphism from
spatial one-forms to spatial vector fields induced by the physical spatial metric, i.e. (3)g(α]̃, ·) = α.
Finally, (3)ṽol denotes the spatial ‘volume density’, i.e. the spatial scalar density whose value in any
frame is the (3)g-volume of the parallelepiped spanned by the frame’s vectors. (The value of (3)ṽol is
given by the square root of the determinant of the matrix of (3)g’s components in the respective frame.)
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

the other’. Therefore, when a dipole moment has coordinate components da
coord., its

tetrad components are simply

da
phys. = ea

b db
coord. . (4.5.22)

Now, since a polarisation is simply a density of dipole moment per spatial volume, the
natural geometric perspective is that polarisation is a spatial vector density field. Thus
a polarisation field with coordinate components P a

coord. has tetrad components

P a
phys. = det(ed

c ) · e
a
b P

b
coord. =

1√
(3)g

ea
b P

b
coord. . (4.5.23)

Finally, we turn to the electric displacement field. In vacuum, it has the interpretation
of electric flux density, with the only contribution to its value coming from the electric
field times ε0. However, the displacement is to be a vector density, so one has to
identify the electric field spatial one-form with the corresponding vector field via the
metric (‘index raising’) and consider the density that is metrically associated to this.
In a medium, the displacement field is the sum of this vacuum displacement and the
polarisation, i.e. we have

Da
coord. = ε0

(3)gabEcoord.b ·
√

(3)g + P a
coord. . (4.5.24)

In tetrad components, it takes the form

Da
phys. = ε0

(3)gabEphys.b + P a
phys. , (4.5.25)

where (3)gab are the tetrad components of the physical spatial metric, which are numer-
ically equal to the Kronecker delta δab.

Application to the Hamiltonian

We will now rewrite the parts of the total Hamiltonian (4.5.10) in which the external
electromagnetic field appears in terms of electromagnetic quantities in an orthonormal
tetrad, as discussed above. Due to the form of the Eddington–Robertson PPN metric,
in order to obtain a tetrad, to our order of approximation we simply need to divide
each of the coordinate basis vectors ∂µ by the square root of the modulus of gµµ (no
summation):

e0 =
1√−g00

∂0 =

(
1− φ

c2

)
∂0 (4.5.26a)

ea =
1
√

gaa
∂a =

(
1 + γ

φ

c2

)
∂a (4.5.26b)
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4.5. The total Hamiltonian including all interactions

Inserting this explicit form of the tetrad, the relevant equations from above relating
the tetrad components of electromagnetic quantities to their coordinate components
attain the following numerical forms:

Ba
phys. =

(
1 + 2γ

φ

c2

)
Ba

coord. (4.5.27a)

da
phys. =

(
1− γ

φ

c2

)
da

coord. (4.5.27b)

P a
phys. =

(
1 + 2γ

φ

c2

)
P a

coord. (4.5.27c)

Da
phys. = ε0

(
1 + (γ− 1)

φ

c2

)
cFa0 +

(
1 + 2γ

φ

c2

)
P a

coord. (4.5.27d)

Comparing (4.5.27d) to the form (4.5.1) of the ‘would-be canonical field momentum’
Π⊥ and its relation Π̃⊥ = Π⊥ −P⊥ to the ‘would-be field momentum’ after the PZW

transformation, we can relate the coordinate components of the latter to the tetrad
components of the displacement field by

D⊥ a
phys. = −

(
1 + 2γ

φ

c2

)
Π̃⊥ a + ε0(γ + 1)

(
φ
(0)
el.

∇φ

c2

)⊥ a

. (4.5.28)

Note that up to the additional second term arising from the additional gravitational
coupling in the Lagrangian, this means that the canonical momentum is just minus the
displacement (when interpreted as a spatial vector density), as in the non-gravitational
case after a PZW transformation.

Now, using the relations in (4.5.27) and (4.5.28), we can express all the interac-
tion terms from (4.5.10d) in terms of ‘physical’, i.e. tetrad, components of the ex-
ternal electromagnetic quantities. For example, the electric dipole interaction term(

1 + (γ + 1) φ(R)
c2

)
Π̃
⊥
(R)

ε0
· d in the Hamiltonian takes the form

−
(

1 +
φ(R)

c2

)
∑

a

D⊥ a
phys.(R)

ε0
da

phys. + (γ + 1)∑
a

(
φ
(0)
el.

∇φ

c2

)⊥ a

(R) da
phys.

= −
√
−g00(R) ∑

a

D⊥ a
phys.(R)

ε0
da

phys. + (γ + 1)∑
a

(
φ
(0)
el.

∇φ

c2

)⊥ a

(R) da
phys. (4.5.29)

when expressed in terms of physical components. The ‘gravitational time dilation’
factor

√−g00 in this expression could now also be absorbed by referring the time
evolution to the proper time of the observer situated at R instead of coordinate time,
leading to a dipole coupling of the usual form ‘−D

ε0
· d ’ [Mar95; Läm95] (up to the

additional term originating from the additional ∂t A⊥ coupling in Lem (4.4.42)).
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4. Post-Newtonian Hamiltonian description of an atom in a weak gravitational field

Similarly, all the other interaction terms from the Hamiltonian (4.5.10d) can be
rewritten in terms of tetrad components. The only difficulty arises when considering
the Röntgen term, i.e. the second term in the interaction Hamiltonian, since it involves
the momentum P, and the similar third term: if the components Pa were just the
components of a classical one-form field, there would be no problem in computing its
tetrad components as

Pphys.a = eb
a Pb =

(
1− γ

φ(R)

c2

)
Pa . (4.5.30)

However, the Pa are operators that don’t commute with the centre of mass position
R, such that in the application of (4.5.30) one has to deal with with operator ordering
ambiguities (which is, of course, a well-known issue regarding curvilinear coordinate
transformations in quantum mechanics). Of course, to avoid dealing with these ambi-
guities, one can stay with the coordinate components of the momentum and rewrite
only the other quantities in terms of tetrad components, arriving at

1
2M
{P · [d× B(R)] + H.c.} = 1

2M

{
∑

a
Pa

(
1− γ

φ(R)

c2

)
(3) ε̃abc db

phys.B
b
phys.(R) + H.c.

}
(4.5.31)

for the Röntgen term, where (3) ε̃ denotes the spatial volume form induced by the
physical metric (with tetrad components given by the antisymmetric symbol). When
doing so, to give a well-defined geometric meaning to the resulting expression on the
right-hand side, one has to keep in mind that the components Pa of the momentum
refer to the coordinate basis and the components db

phys., Bb
phys. of the dipole moment

and the magnetic field refer to the tetrad.
Rewriting all possible terms in the atom–light interaction Hamiltonian in terms of

tetrad components, glossing over the just-described ordering ambiguities, we arrive at

HAL,final = −
√
−g00(R)

D⊥phys.(R)

ε0
· dphys. +

1
2M
{Pphys. · [dphys. × Bphys.(R)] + H.c.}

− m1 −m2

4m1m2
{pr phys. · [dphys. × Bphys.(R)] + H.c.}

+
1

8µ

(
1− 2γ

φ(R)

c2

)
(dphys. × Bphys.(R))2 +

1
2ε0

∫
d3x

√
−gP⊥d phys.

2
(x, t)

+
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 · D
⊥
phys. . (4.5.32)

Here we employed ‘three-vector’ notation also for three-tuples of tetrad components,
i.e. a ‘dot product’ Xphys. · Yphys. := ∑a Xa

phys.Y
a
phys. is a scalar product with respect to

the physical spatial metric, and a ‘cross product’ (Yphys. × Zphys.)a = (3) ε̃abcY
b
phys.Z

c
phys.

is also defined by the spatial volume form (3) ε̃ induced by the physical spatial metric.
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To the best of our knowledge, the atom–light interaction terms in the presence of
gravity obtained in (4.5.10d) and discussed above are new, save for the electric dipole
coupling which was already discussed in [Mar95; Läm95].

Finally, expressing the external field energy (4.5.10e) in terms of tetrad components,
i.e. inserting (4.5.27a) and (4.5.28), we obtain

HL,final =
ε0

2

∫
d3x

(
1 + (1− 3γ)

φ

c2

) [
(D⊥phys./ε0)

2 + c2B2
phys.

]
−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 · D
⊥
phys.

=
ε0

2

∫
d3x

√
−g
[
(D⊥phys./ε0)

2 + c2B2
phys.

]
−
∫

d3x (γ + 1) φ
(0)
el.

∇φ

c2 · D
⊥
phys. . (4.5.33)

Up to the second integral, which cancels with the last term from (4.5.32), this is the
standard result of the flat-spacetime electromagnetic field energy [Jac98] minimally
coupled to gravity [MTW73], as was to be expected.13

As we have seen in the previous section for internal energies and in this section
for electromagnetic quantities, several terms in the final post-Newtonian Hamiltonian
(4.5.10) obtain a natural interpretation when expressed in terms of quantities with
direct metric significance, i.e. in terms of components with respect to an orthonormal
tetrad frame. Note, however, that such a tetrad (4.5.26) depends on the metric g, i.e. on
part of the physical field configuration. This entails that, when comparing physical
situations in different gravitational fields, i.e. with different physical metrics g, it is not
at all conceptually obvious how to relate predictions made for the two situations to
each other: even though the Hamiltonian looks the same in both cases when expressed
in terms of tetrad components, it may be the case that the quantum-mechanical state
vector take different forms when expressed in terms of metric quantities in the two
situations, due to some specific nature of its preparation procedure (which might, for
example, depend on spacetime curvature in some way).

Thus, for a proper interpretation of calculational predictions for experimental situ-
ations, one has (in principle) to describe the whole experimental situation, including all
preparation and measurement procedures, in terms of operationally defined quantities,
and express all predicted results in terms of these operational quantities. This is the
only way to ensure true coordinate- and frame-independence of predictions.

13This result would have been immediate if we did the whole calculation in terms of tetrad components
instead of coordinate components, as would have some steps in the calculation of the electromagnetic
Lagrangian. However, as stressed in section 4.2.2, the approach based on the background structures
with adapted coordinates enabled us to provide a direct comparison with the original calculation of
[SB18].
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5. Classical perspectives on the
Newton–Wigner position
observable

This chapter, which is thematically entirely independent from the rest of the thesis,
deals with the Newton–Wigner position observable for Poincaré-invariant classical
systems. To explain at least the little connection to the rest of the thesis that there is,
let me (the author) briefly describe how my interest in the topics of this chapter arose.
Sonnleitner and Barnett in [SB18], as well as myself in my calculations based on theirs
as documented in chapter 4, employed Newtonian centre of mass coordinates in the
description of a (locally) Poincaré-symmetric composite system, simply for the sake
of computational simplicity. This led me to the old question of what kind of central
positions one could – or perhaps should? – use for such descriptions. Thus, I was led to
extending my knowledge of special-relativistic localisation and position observables, in
particular with the beautiful geometric ‘hyperplane observable’ perspective of Fleming
[Fle65]. In the course of this, I wondered if and how one could understand Fleming’s
‘centre of spin’ interpretation of the Newton–Wigner observable in a more geometric
way, and also if the quantum Newton–Wigner theorem has a classical analogue (which
it ‘should’ have, morally speaking). This chapter is the outcome of those considerations.
We will prove an existence and uniqueness theorem for elementary systems that
parallels the well-known Newton–Wigner theorem in the quantum context, and also
discuss and justify Fleming’s geometric interpretation of the Newton–Wigner position
as ‘centre of spin’.

Other than in the previous chapters, here we will be fully mathematically rigorous,
and also adopt a more mathematical style of presentation. The material in this chapter
is also contained in the preprint [SG20], which is under consideration for publication
as of the writing of this thesis.
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5. Classical perspectives on the Newton–Wigner position observable

5.1. Introduction

Even though we shall in this chapter exclusively deal with classical (i.e. non-quantum)
aspects of the Newton–Wigner position observable, we wish to start with a brief
discussion of its historic origin, which is based in the early history of relativistic
quantum field theory (RQFT). After that we will briefly remark on its classical importance
and give an outline of the investigation that is to follow. A more detailed overview of
the history of the localisation problem in special-relativistic quantum theory may be
found in our preprint [SG20].

As is well-known, the Newtonian concepts of spatial position of elementary, i.e.
indecomposable, systems and of centre of mass of composite systems satisfy the
expected covariance properties under spatial translations and rotations, and readily
translate to ordinary, Galilei-invariant quantum mechanics. There, concepts like
‘position operators’ and the associated projection operators for positions within any
measurable subset of space can be defined, again fulfilling the expected transformation
rules under spatial motions.

However, serious difficulties with naive localisation concepts arise in attempts to
combine quantum mechanics with special relativity, connected with the fact that
negative-energy modes are necessarily introduced if a ‘naive position operator’ (like
multiplying a naive ‘wave function’ with the position coordinate) is applied to a positive-
energy state. However, in 1949, Newton and Wigner showed that it was nevertheless
possible to define localised states in a special-relativistic quantum context [NW49]: their
method was to write down axioms for what it meant that a system is ‘localised in space
at a given time’ and then investigate existence as well as uniqueness for corresponding
position operators. It turned out that existence and uniqueness are indeed given
for elementary systems (with fields being elements of irreducible representations of
the Poincaré group), except for massless fields of higher helicity. A more rigorous
derivation was later given by Wightman [Wig62].

In 1965, Fleming gave a geometric discussion of special-relativistic position observ-
ables [Fle65] that highlighted the group-theoretic properties (regarding the group of
spacetime automorphisms) underlying several constructions and thereby clarified many
of the sometimes controversial issues regarding ‘covariance’. Fleming focussed on
three position observables which he called ‘centre of inertia’, ‘centre of mass’, and the
Newton–Wigner position observable, for which he, at the very end of his paper and
almost in passing, suggested the name ‘centre of spin’. We shall give a more detailed
geometric justification for that name in this chapter.

It should be emphasised that the Newton–Wigner notion of localisation still suffers
from the acausal spreading of localisation domains that is typical of fields satisfying
special-relativistic wave equations, an observation made many times in the literature
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in one form or another; see, e.g., [SG65; Heg74; Rui81]: if a system is Newton–Wigner
localised at a point in space at a time t, it is not strictly localised anymore in any
bounded region of space at any time later than t [NW49; WS55]. Conceptual issues
of that sort, and related ones concerning, in particular, the relation between Newton–
Wigner localisation and the Reeh-Schlieder theorem in RQFT have been discussed many
times in the literature even up to the more recent past; see, e.g., [FB99] and [Fle00;
Hal01]. For us, however, these quantum field theoretic issues are not the point of
interest.

Clearly, due to its historical development, most discussions of Newton–Wigner
localisation put their emphasis on its relevance for RQFT: the study of deeply relativistic
classical systems was simply not considered relevant at the time when special-relativistic
localisation was first investigated. However, that has clearly changed with the advent
of modern relativistic astrophysics. For example, modern analytical studies of close
compact binary-star systems also make use of various definitions of ‘centre of mass’
in an attempt to separate the ‘overall’ from the ‘internal’ motion as far as possible. In
that respect, it turns out that modern treatments of gravitationally interacting two-body
systems within the theoretical framework of Hamiltonian general relativity show a clear
preference for the Newton–Wigner position [Ste11; SJ18], emphasising once more its
distinguished role, now in a purely classical context. A concise account of the various
definitions of ‘centres’ that have been used in the context of general relativity is given
in [CLS18], which also contains most of the original references in its bibliography. In
our opinion, all this provides sufficient motivation for further attempts to work out the
characteristic properties of Newton–Wigner localisation in the classical realm.

The plan of our investigation is as follows. After setting up our notation and
conventions in section 5.2, where we also introduce some mathematical background,
we prove a few results in section 5.3 which are intended to explain in what sense the
Newton–Wigner position is indeed a ‘centre of spin’ and in what sense it is uniquely so
(theorem 5.3.12). We continue in section 5.4 with the statement and proof of a classical
analogue of the Newton–Wigner theorem, according to which the Newton–Wigner
position is the unique observable satisfying a set of axioms. The result is presented in
theorem 5.4.6 and in a slightly different formulation in theorem 5.4.7. They say that
for a classical elementary Poincaré-invariant system with timelike four-momentum
(as classified by Arens [Are71a; Are71b]), there is a unique observable transforming
‘as a position should’ under translations, rotations, and time reversal, having Poisson-
commuting components, and satisfying a regularity condition (being C1 on all of phase
space). This observable is the Newton–Wigner position.
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5.2. Notation and conventions

This section is meant to list our notation and conventions in the general sense, by also
providing some background material on the geometric and group-theoretic setting onto
which the following two sections are based.

5.2.1. Minkowski spacetime and the Poincaré group

As before, we use the ‘mostly plus’ (−+++) signature convention for the spacetime
metric and stick to four spacetime dimensions. This is not to say that our analysis cannot
be generalised to other dimensions. In fact, as will become clear as we proceed, many
of our statements have an obvious generalisation to higher dimensions. On the other
hand, as will also become clear, there are a few constructions which would definitely
look different in other dimensions, like, e.g., the use of the Pauli–Lubański ‘vector’ in
section 5.2.5, which becomes an (n− 3)-form in n dimensions, or the classification of
elementary systems.

In this chapter, we will view Minkowski spacetime as an affine space M, and
the corresponding vector space of ‘difference vectors’ will be denoted by V. The
Minkowski metric will be denoted by η : V × V → R. The isomorphism of V with
its dual space V∗ induced by η (‘index lowering’) will be denoted by a superscript
‘flat’ symbol [, i.e. for a vector v ∈ V the corresponding one-form is v[ := η(v, ·) ∈ V∗.
The inverse isomorphism (‘index raising’) will be denoted by a superscript sharp
symbol ]. Note that under a Lorentz transformation Λ, v ∈ V transforms under the
defining representation, (Λ, v) 7→ Λv, whereas its image v[ ∈ V∗ under the η-induced
isomorphism transforms under the inverse transposed, (Λ, v[) 7→ (Λ−1)>v[ = v[ ◦Λ−1.

We fix an orientation and a time orientation on M. The (homogeneous) Lorentz
group, i.e. the group of linear isometries of (V, η), will be denoted by L := O(V, η).
The Poincaré group, i.e. the group of affine isometries of (M, η), will be denoted by P .
The proper orthochronous Lorentz and Poincaré groups (i.e. the connected components
of the identity) will be denoted by L↑+ and P↑+, respectively1.

We employ standard index notation for Minkowski spacetime, using lowercase Greek
letters for spacetime indices. When working with respect to bases, we will, unless
otherwise stated, assume them to be positively oriented and orthonormal, and we will
use 0 for the timelike and lowercase Latin letters for spatial indices. We will adhere
to standard practice in physics where lowering and raising of indices are done while
keeping the same kernel symbol; i.e. for a vector v ∈ V with components vµ, the
components of the corresponding one-form v[ ∈ V∗ will be denoted simply by vµ. For

1Note that speaking of just orthochronous or proper Lorentz / Poincaré transformations does not make
invariant sense without specifying a time direction.
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the sake of notational clarity, we will sometimes denote the Minkowski inner product
of two vectors u, v ∈ V simply by

u · v := η(u, v) = uµvµ. (5.2.1)

We fix, once and for all, a reference point / origin o ∈ M in (affine) Minkowski
spacetime, allowing us to identify M with its corresponding vector space V (identifying
the reference point o ∈ M with the zero vector 0 ∈ V, i.e. via M 3 x 7→ (x− o) ∈ V),
which we will do most of the time. Using the reference point o ∈ M, the Poincaré
group splits as a semidirect product

P = Ln V (5.2.2)

where the Lorentz group factor in this decomposition arises as the stabiliser of the
reference point – i.e. a Poincaré transformation is considered a homogeneous Lorentz
transformation if and only if it leaves o invariant. Thus, a homogeneous Lorentz
transformation Λ ∈ L acts on a point x ∈ M ≡ V as (Λx)µ = Λµ

νxν, and a Poincaré
transformation (Λ, a) ∈ P acts as ((Λ, a) · x)µ = Λµ

νxν + aµ.
We will sometimes make use of the set of spacelike hyperplanes in (affine) Minkowski

spacetime M, which we will denote by

SpHP := {Σ ⊂ M : Σ spacelike hyperplane}. (5.2.3)

Since the image of a spacelike hyperplane under a Poincaré transformation is again a
spacelike hyperplane, there is a natural action of the Poincaré group on SpHP, which
we will denote by ((Λ, a), Σ) 7→ (Λ, a) · Σ and spell out in more detail in (5.3.4) below.

5.2.2. The Poincaré algebra

When considering the Lie algebra p of the Poincaré group (or symplectic representations
thereof), we will denote the generators of translations by Pµ such that aµPµ is the
‘infinitesimal transformation’ corresponding to the translation by a ∈ V, and the
generators of homogeneous Lorentz transformations (with respect to the chosen origin
o) by Jµν, such that − 1

2 ωµν Jµν is the ‘infinitesimal transformation’ corresponding to the
Lorentz transformation exp(ω) ∈ L↑+ ⊂ GL(V) for ω ∈ l = Lie(L) ⊂ End(V).

Since we are using the (−+++) signature convention, the minus sign in the
expression − 1

2 ωµν Jµν is necessary in order that Jab generate rotations in the ea–eb plane
from ea towards eb, which is the convention we want to adopt. A detailed discussion of
these issues regarding sign conventions for the generators of special orthogonal groups
can be found in appendix C. Moreover, if u ∈ V is a future-directed unit timelike vector,
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then cPµuµ (i.e. cP0 in the Lorentz frame defined by u = e0), which is minus the energy
in the frame defined by u, is the generator of active time translations in the direction of
u. Therefore, with our conventions, for the case of causal four-momentum P ∈ V the
energy (with respect to future-directed time directions) is positive if and only if P is
future-directed.

With our conventions, the commutation relations for the Poincaré generators are as
follows:

[Pµ, Pν] = 0 (5.2.4a)

[Jµν, Pρ] = ηµρPν − ηνρPµ (5.2.4b)

[Jµν, Jρσ] = ηµρ Jνσ + (antisymm.)

=
(

ηµρ Jνσ − (µ↔ ν)
)
−
(

ρ↔ σ
)

(5.2.4c)

As indicated, the abbreviation ‘antisymm.’ stands for the additional three terms that
one obtains by first antisymmetrising (without a factor of 1/2) in the first pair of indices
on the left hand side, here (µν), and then the ensuing combination once more in the
second set of indices, here (ρσ), again without a factor 1/2.

5.2.3. Symplectic geometry

We employ the following sign conventions for symplectic geometry (as used by
Abraham and Marsden in [AM78], but different to those of Arnold in [Arn89]). Let
(Γ, ω) be a symplectic manifold. For a smooth function f ∈ C∞(Γ), we define the
Hamiltonian vector field X f ∈ X(Γ) (X denoting the space of smooth vector fields)
corresponding to f by

ιX f ω := ω(X f , ·) = d f , (5.2.5)

where ι denotes the interior product between vector fields and differential forms. The
Poisson bracket of two smooth functions f , g ∈ C∞(Γ) is then defined as

{ f , g} := ω(X f , Xg) = d f (Xg) = ιXg d f . (5.2.6)

These conventions give the usual coordinate forms of the Hamiltonian flow equations
and the Poisson bracket if the symplectic form ω takes the coordinate form (sign-
opposite to that in [Arn89])

ω = dqa ∧ dpa . (5.2.7)

It is important to note that C∞(Γ) as well as X(Γ) are (infinite dimensional) Lie
algebras with respect to the Poisson bracket and the commutator respectively, and
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that, with respect to these Lie structures, the map C∞(Γ) → X(Γ), f 7→ X f is a Lie
anti-homomorphism, that is,

X{ f ,g} = − [X f , Xg]. (5.2.8)

By saying that a one-parameter group φs : Γ→ Γ of symplectomorphisms is generated
by a function g ∈ C∞(Γ), we mean that φs is the flow of the Hamiltonian vector field to
g, i.e. that

d
ds

φs(γ) = Xg(φs(γ)) (5.2.9)

for γ ∈ Γ, or equivalently

d
ds

( f ◦ φs) =
(

d f (Xg)
)
◦ φs

= { f , g} ◦ φs (5.2.10)

for f ∈ C∞(Γ). Here both sides of (5.2.10) are to be understood as evaluated pointwise.

5.2.4. Poincaré-invariant Hamiltonian systems and their momentum maps

A classical Poincaré-invariant system will be described by a phase space (Γ, ω) – i.e. a
symplectic manifold – with a symplectic action

Φ : P × Γ→ Γ, ((Λ, a), γ) 7→ Φ(Λ,a)(γ) (5.2.11)

of the Poincaré group (in fact, for most of our purposes an action of P↑+ is enough). We
will take Φ to be a left action, i.e. to satisfy2

Φ(Λ1,a1) ◦Φ(Λ2,a2) = Φ(Λ1Λ2,a1+Λ1a2) . (5.2.12)

We will denote such systems as (Γ, ω, Φ).
The left action Φ of P on Γ induces vector fields Vξ on Γ (the so-called fundamental

vector fields), one for each ξ in the Lie algebra p of P . They are given by

Vξ(γ) :=
d
ds

Φexp(sξ)(γ)

∣∣∣∣
s=0

, (5.2.13)

so that the map p → X(Γ), ξ 7→ Vξ , given by the differential of Φ with respect to
its first argument and evaluated at the group identity, is clearly linear. In fact, it is

2We refer to [Giu15] for a detailed discussion of left versus right actions and the corresponding sign
conventions that will also play an important role in the following.
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straightforward to show that it is an anti-homomorphism from the Lie algebra p into
the Lie algebra X(M),3 i.e. [

Vξ1 , Vξ2

]
= −V[ξ1,ξ2]. (5.2.14)

Moreover, a similar calculation shows [Giu15, appendix B]

(DΦ(Λ,a)) ◦Vξ = VAd(Λ,a)(ξ)
◦Φ(Λ,a) , (5.2.15)

where DΦ(Λ,a) : TΓ→ TΓ denotes the differential of Φ(Λ,a) : Γ→ Γ.
As P acts by symplectomorphisms, the fundamental vector fields Vξ are locally

Hamiltonian, i.e. locally (in a neighbourhood of each point), for each ξ ∈ p there exists a
local function fξ such that d fξ = ιVξ

ω. In fact, due to the Poincaré algebra being perfect
(in spacetime dimension greater than 2), the fξ can be shown to exist globally, so that
each Vξ is a globally defined Hamiltonian vector field (i.e. each one-parameter group
Φexp(sξ) : Γ → Γ of symplectomorphisms is generated, in the sense of (5.2.10), by the
corresponding function fξ). Moreover, due to p having vanishing second cohomology,
the fξ can be chosen in such a way that the map ξ 7→ fξ from the Lie algebra p to the
Lie algebra C∞(Γ) (the Lie product of the latter being the Poisson bracket) is a Lie
homomorphism, i.e. {

fξ1 , fξ2

}
= f[ξ1,ξ2]. (5.2.16)

I.e., for spacetime dimension greater than 2, any symplectic action of the Poincaré
group is always a Poisson action. Details of these arguments may be found in [SG20].
Note that, according to (5.2.14) and (5.2.8), both maps ξ 7→ Vξ and Vξ 7→ fξ are Lie
anti-homomorphisms. Hence their combination ξ 7→ fξ is a proper Lie homomorphism
(no minus sign on the right-hand side of (5.2.16)).

Now, we will deduce the transformation properties of the generators fξ under the
action of P . Taking the pullback of the equation ω(Vξ , ·) = d fξ with Φ(Λ,a)−1 and using
the invariance of ω as well as (5.2.15), we immediately deduce

Φ∗(Λ,a)−1 fξ := fξ ◦Φ(Λ,a)−1 = fAd(Λ,a)(ξ)
, (5.2.17)

which may also be read as the invariance of the real-valued function f : p× Γ→ R,
(ξ, γ) 7→ fξ(γ), under the combined left action of P on p × Γ given by Ad × Φ.
Alternatively, since ξ 7→ fξ is linear, we may regard f as p∗-valued function on Γ,
where p∗ denotes the vector space dual to p. This map is called the momentum map4 for
the given system (Γ, ω, Φ), which according to (5.2.17) is then Ad∗-equivariant:

f ◦Φ(Λ,a) = Ad∗(Λ,a) ◦ f ⇐⇒ Ad∗(Λ,a) ◦ f ◦Φ(Λ,a)−1 = f (5.2.18)

3Had we chosen Φ to be a right action, we would have obtained a proper Lie homomorphism; compare
[Giu15, appendix B].

4See [AM78, chap. 4.2] for a general discussion on the notion of ‘momentum map’ and also [Giu15] for
an account of its use and properties restricted to the case of Poincaré-invariant systems.
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The second expression is again meant to stress that the condition of equivariance
is equivalent to the invariance of the function f under the combined left actions in
its domain and target spaces (invariance of the graph). Note that Ad∗ denotes the
co-adjoint representation of P on p∗, given by Ad∗(Λ,a) := (Ad(Λ,a)−1)> with superscript
> denoting the transposed map.

Points in Γ faithfully represent the state of the physical system whereas observables
correspond to functions on Γ. In order to implement time evolution we shall employ a
‘classical Heisenberg picture’, in which the phase space point remains the same at all
times, whereas the evolution will correspond to the changes of observables according
to their association to different spacelike hyperplanes in spacetime. Although this is
different from the (‘Schrödinger picture’) approach usually taken in classical mechanics
(where the state of the system is given by a phase space point changing in ‘time’,
which is an external parameter), this point of view is clearly better adapted to the
Poincaré-relativistic framework, in which there simply is no absolute notion of time.

Choosing a set of ten basis vectors (Pµ, Jµν) for p obeying (5.2.4) (compare appendix
C), we can contract the p∗-valued momentum map with each of these basis vectors
in order to obtain the corresponding ten real-valued component functions of the
momentum map. By some abuse of notation we shall call these component functions
by the same letters (Pµ, Jµν) as the Lie algebra elements themselves. (5.2.16) now says
that the map that sends the Lie algebra elements Pµ and Jµν in p to the corresponding
component functions of the momentum map is a Lie homomorphism from p to the Lie
algebra C∞(Γ, R) (the latter with Poisson bracket as Lie multiplication):

{Pµ, Pν} = 0 (5.2.19a)

{Jµν, Pρ} = ηµρPν − ηνρPµ (5.2.19b)

{Jµν, Jρσ} = ηµρ Jνσ + (antisymm.) (5.2.19c)

The Ad∗-equivariance of the momentum map can now be written down in component
form if we first set ξ = Pµ and then ξ = Jµν. Indeed, considering (5.2.17) and recalling
our abuse of notation in denoting the real-valued phase space functions fPµ and f Jµν

again with the letters Pµ and Jµν, we can immediately read from (D.8) of appendix D, in
which we need to replace ea with Pµ and Bab with −Jµν according to (C.13) of appendix
C, that

Pµ ◦Φ(Λ,a) = (Λ−1)ν
µ Pν , (5.2.20a)

Jµν ◦Φ(Λ,a) = (Λ−1)
ρ

µ(Λ−1)σ
ν Jρσ + aµ(Λ−1)

ρ
ν Pρ − aν(Λ−1)

ρ
µ Pρ . (5.2.20b)

Note that the left-hand sides of (5.2.20) are precisely what we need; that is, we need
the composition with Φ(Λ,a) rather than Φ(Λ,a)−1 to evaluate the momenta Pµ and Jµν

on the actively Poincaré-displaced phase space points. Note also that if we had put the
indices upstairs and had used, e.g., Pµ = ηµνPν rather than Pµ then the right-hand side
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of (5.2.20a) would read Λµ
ν Pν, and correspondingly in (5.2.20b). Finally recall that the

last term on the right-hand side of (5.2.20b) just reflects the familiar transformation
of angular momentum (the momentum associated to spatial rotations) under spatial
translations, which is typical for the co-adjoint representation, which here gets extended
to the momentum associated to boost transformations5.

5.2.5. The Pauli–Lubański vector

Given a classical Poincaré-invariant system, the Pauli–Lubański vector W is the V-valued
phase space function defined in components by

Wµ = −1
2

εµνρσPν Jρσ (5.2.21)

where ε denotes the volume form of Minkowski space (whose components in a
positively oriented orthonormal basis are just given by the usual totally antisymmetric
symbol, with ε0123 = +1). The sign convention in this definition can be understood as
follows. We imagine a situation in which P is timelike and future-directed (positive
energy, see above), and consider the spatial components of W with respect to an
orthonormal basis {e0, . . . , e3} of V with (e0)µ = Pµ/

√
−PνPν (‘momentum rest frame’).

For those, we obtain

Wa√
−PµPµ

= −1
2

εa0ρσ Jρσ =
1
2
(3)εabc Jbc (5.2.22)

where the (3)εabc is the three-dimensional antisymmetric symbol / the components of
the spatial volume form. Thus, since Jbc = Jbc generates rotations from eb towards
ec, we see that Wa/

√
−PµPµ generates rotations ‘along the ea axis’ in the usual, three-

dimensional sense. Thus, W/
√
−PµPµ can be interpreted as the ‘spatial spin vector’

in the momentum rest frame, which is the usual interpretation of the Pauli–Lubański
vector.

Rewriting the definition of W as

Wµ = −1
2

εµνρσPν Jρσ =
1
2

ενρσµPν Jρσ =
1
3!

ενρσµ(P[ ∧ J)νρσ, (5.2.23)

we see that in the language of exterior algebra

W = (∗(P[ ∧ J))] (5.2.24)

where ∗ is the Hodge star operator. Here we use the standard sign conventions for the
Hodge operator, i.e. the definition α ∧ ∗β = η(α, β) ε; see for example [Str13] or [Giu15,
appendix A].

5One easily checks that the signs are right: translating a system whose momentum points in y-direction
by a positive amount into the x-direction should enhance the angular momentum in z-direction. This
is just what (5.2.20b) implies.
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5.3. The Newton–Wigner position as a ‘centre of spin’

In this section we will explain our understanding and present our geometric clarification
of Fleming’s statement in [Fle65] that the Newton–Wigner position may be understood
as a ‘centre of spin’. To this end, we introduce Fleming’s geometric framework for
special-relativistic position observables, and then discuss the definition of position
observables by spin supplementary conditions (SSCs). Finally, we introduce the notion
of a position observable being a ‘centre of spin’, and prove that the Newton–Wigner
position is the only continuous position observable defined by an SSC that represents a
centre of spin in that sense.

5.3.1. Position observables on spacelike hyperplanes

We start by describing the general framework developed by Fleming in [Fle65] and
also [Fle66] for the description of special-relativistic position observables, translated to
our case of classical systems from Fleming’s quantum language. Consider a classical
Poincaré-invariant system (Γ, ω, Φ). By a position observable χ for this system we
understand a ‘procedure’ which, given any spacelike hyperplane Σ ∈ SpHP in (affine)
Minkowski spacetime, allows us to ‘localise’ the system on Σ. More precisely, this
means that for any Σ ∈ SpHP, we have an M-valued phase space function

χ(Σ) : Γ→ M (5.3.1)

with image contained in Σ, whose value χ(Σ)(γ) for γ ∈ Γ is to be interpreted as the
‘χ-position’ of our system in state γ on the hyperplane Σ.

Any spacelike hyperplane Σ ∈ SpHP is uniquely characterised by its (timelike) future-
directed unit normal u ∈ V and its distance τ ∈ R to the origin o ∈ M, measured along
the straight line through o in direction u. In terms of these, it has the form

Σ = {x ∈ M : uµxµ = −τ}, (5.3.2)

where we identified M with V. From now on, whenever convenient, we will identify
Σ with the tuple (u, τ). The condition that the image of χ(Σ) be contained in Σ then
takes the form

uµχµ(u, τ)(γ) = −τ. (5.3.3)

We can now also spell out explicitly the left action of P on SpHP that is induced from
the left action of P on M (as already mentioned below (5.2.3)):

(Λ, a) · (u, τ) = (Λu, τ −Λu · a) (5.3.4)

Fixing u and varying τ in (5.3.2), we obtain the spacelike hyperplanes corresponding
to different ‘instants of time’ τ in the Lorentz frame corresponding to u. Thus, for a
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5. Classical perspectives on the Newton–Wigner position observable

fixed state γ ∈ Γ and fixed frame u, the set

{χ(u, τ)(γ) : τ ∈ R} ⊂ M (5.3.5)

gives the ‘worldline’ of the χ-position of the system. Following Fleming [Fle65], who
says that this is a requirement ‘easily agreed upon’, we require that this worldline
should be parallel to the four-momentum6, i.e. ∂χ(u,τ)

∂τ ∝ P. Together with (5.3.3), this
implies condition (5.3.8) in the definition below, which is meant to sum up all the
preceding considerations.

Definition 5.3.1. A position observable for a classical Poincaré-invariant system (Γ, ω, Φ)

with causal four-momentum is a map

χ : SpHP× Γ→ M, (Σ, γ) 7→ χ(Σ)(γ) (5.3.6)

satisfying
χ(Σ)(γ) ∈ Σ (5.3.7)

for all Σ ∈ SpHP and all γ ∈ Γ (or, equivalently, (5.3.3)), as well as

∂χµ(u, τ)

∂τ
=

1
(−u · P)Pµ . (5.3.8)

For fixed Σ ∈ SpHP, we will often view χ(Σ) : Γ→ M as a phase space function in its
own right.

Note that (5.3.8) and (5.3.3) imply that the four-momentum must be causal for such
a position observable to exist.

In addition to the demands of the positions χ(Σ) being located on Σ and of ‘world-
lines’ in direction of the four-momentum, Fleming also introduces the following
covariance requirement (which we, different to Fleming, do not include in the definition
of a position observable):

Definition 5.3.2. A position observable for a classical Poincaré-invariant system (Γ, ω, Φ)

is said to be covariant if and only if

χ
(
(Λ, a) · Σ

)(
Φ(Λ,a)(γ)

)
= (Λ, a) ·

(
χ(Σ)(γ)

)
(5.3.9)

for all Σ ∈ SpHP, γ ∈ Γ and (Λ, a) ∈ P . This can be read concisely as saying that the
map (5.3.6) is invariant under the natural left action induced from those on the domain
and target spaces (invariance of χ’s graph):

χ = (Λ, a) ◦ χ ◦
(
(Λ, a)−1 ×Φ(Λ,a)−1

)
. (5.3.10)

6This assumption is natural for closed systems as we consider here. For non-closed systems, i.e. systems
without local energy–momentum conservation, the four-velocity is in general not parallel to the
four-momentum; see, e.g., the discussion at the beginning of section 2.6 in [Giu18].
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This is indeed a sensible notion of covariance: it demands that, for any Poincaré
transformation (Λ, a), the χ-position of the transformed system Φ(Λ,a)(γ) on the
transformed hyperplane (Λ, a) · Σ be the transform of the ‘original position’ χ(Σ)(γ).
In terms of components, (5.3.9) assumes the form

χµ(Λu, τ −Λu · a) ◦Φ(Λ,a) = Λµ
νχν(u, τ) + aµ , (5.3.11)

taking into account (5.3.4).

5.3.2. Spin supplementary conditions

The most important and widely used procedure to define special-relativistic position
observables is by so-called spin supplementary conditions. Suppose we are given a causal,
future-directed vector P ∈ V and an antisymmetric 2-tensor J ∈ ∧2 V∗, describing the
four-momentum and the angular momentum (with respect to the origin o ∈ M) of
some physical system. For any future-directed timelike vector f ∈ V, we then consider
the equation

0 = Sµν f ν (5.3.12)

with Sµν := Jµν − xµPν + xνPµ, which we view as an equation for x ∈ M. Since S is the
angular momentum tensor with respect to the reference point x (instead of the origin
o as for J), or the spin tensor with respect to x, (5.3.12) is called the spin supplementary
condition (SSC) with respect to f . As is well-known (and easily verified), the set of its
solutions x is a line in M with tangent P, namely

{x ∈ M : 0 = Sµν f ν} =
{

x ∈ M : xµ =
Jµρ f ρ

f · P + λPµ with λ ∈ R

}
. (5.3.13)

This line can be given the interpretation of the ‘centre of energy’ worldline of our system
with respect to the Lorentz frame defined by f . See [CLS18] and references therein for
further discussion on the interpretation and impact of various SSCs as regards equations
of motion in general relativity.

The idea is now to explicitly combine the SSC-based approach with Fleming’s
geometric ideas, thereby introducing the two independent parameters f from (5.3.13)
and u from (5.3.2). We define a position observable in the sense of definition 5.3.1 in the
following way: given a classical Poincaré-invariant system (Γ, ω, Φ) with causal four-
momentum and a state γ ∈ Γ, we consider the SSC worldline defined by (5.3.12) where
we now take Pµ(γ) for the four-momentum and Jµν(γ) for the angular momentum
tensor. We then simply define χ(Σ)(γ) to be the intersection of this worldline with the
hyperplane Σ = (u, τ). This means that we take the x(λ) from (5.3.13) and determine
the parameter λ from (5.3.3), i.e. from x(λ) · u + τ = 0. Inserting the λ = λ(u, τ) so
determined leads to
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Definition 5.3.3. The SSC position observable with respect to f is given by

χµ(u, τ) =
Jµρ f ρ

f · P +
τPµ

(−u · P) −
Jλρuλ f ρ

(− f · P)
Pµ

(−u · P) . (5.3.14)

Let us again stress the interpretation of this expression: it is the SSC position with
respect to f (i.e. a point on the ‘centre of energy’ worldline with respect to f ) as localised
on the hyperplane characterised by unit normal u and distance τ to the origin, i.e. as
seen in the Lorentz frame with respect to u at ‘time’ τ.

Note that for this definition to make sense, f does not have to be a fixed timelike
future-directed vector: it can depend on the normal u (and could even depend on τ),
and it can also depend on phase space7. Of course this means that according to this
dependence of f , we will possibly be considering different worldlines for different
choices of u.

Example 5.3.4. (i) Choosing f = u, we are considering, for each u, the SSC worldline
with respect to u, i.e. the centre of energy worldline8 with respect to u. Using
(5.3.14), the centre of energy position observable has the form

χCE
µ (u, τ) =

Jµρuρ

u · P +
τPµ

(−u · P) . (5.3.15)

(ii) In the case of timelike four-momentum, we can choose f = P the four-momentum
(the Tulczyjew–Dixon SSC), such that the corresponding SSC worldline is the centre
of energy worldline in the momentum rest frame of the system. This worldline,
which is obviously independent of u, was called the centre of inertia worldline by
Fleming [Fle65]. The centre of inertia has the form

χCI
µ (u, τ) = −

JµρPρ

m2c2 +
τPµ

(−u · P) −
JλρuλPρ

m2c2

Pµ

(−u · P) , (5.3.16)

where m =
√
−P2/c is the mass of the system.

7Various choices for f were given distinguished names in the literature. The main ones, different from
the Newton–Wigner condition to be discussed here, are as follows. If f is meant to just characterise a
fixed ‘laboratory frame’, which may be preferred for any reason, like rotational symmetries in that
frame, the SSC is named after Corinaldesi & Papapetrou [CP51]. If f is proportional to the total linear
momentum of the system, the SSC is named after Tulczyjew [Tul59] and Dixon [Dix70]. If f is chosen
in a somewhat self-referential way to be the four-velocity of the worldline that is to be determined by
the very SSC containing that f , the condition is named after Frenkel [Fre26], Mathisson [Mat37; Mat10],
and Pirani [Pir56; Pir09].

8Note that it was called ‘centre of mass’ by Fleming [Fle65].
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(iii) Choosing f = u + P
mc where m =

√
−P2/c is the mass of the system (again only

possible in the case of timelike four-momentum), we obtain the Newton–Wigner
position observable. Evaluating (5.3.14), it has the form

χNW
µ (u, τ) = −

Jµρ

(
uρ + Pρ

mc

)
mc− u · P +

τPµ

(−u · P) −
JλρuλPρ

mc(mc− u · P)
Pµ

(−u · P) . (5.3.17)

Of course, the SSC position observable (5.3.14) will generally not be covariant in
the sense of definition 5.3.2 unless f is also assumed to transform appropriately. If
f depends on Σ ∈ SpHP and γ ∈ Γ and takes values in V it seems obvious that for
the resulting position to be covariant f itself must be a covariant function under the
combined actions on its domain and target spaces. Indeed, we have

Proposition 5.3.5. If the vector f defining the SSC position observable χ is a function

f : SpHP× Γ→ V, (Σ, γ) 7→ f (Σ)(γ), (5.3.18)

such that
f
(
(Λ, a) · Σ

)(
Φ(Λ,a)(γ)

)
= Λ ·

(
f (Σ)(γ)

)
(5.3.19)

for all Σ ∈ SpHP, γ ∈ Γ, and (Λ, a) ∈ P , then χ is a covariant position observable. Again we
note that, just like in the transition from (5.3.9) to (5.3.10), we may rewrite (5.3.19) equivalently
as expressing the invariance of f (i.e. its graph) under simultaneous actions on its domain and
target spaces (using that translations act trivially on the target space V):

f = Λ ◦ f ◦
(
(Λ, a)−1 ×Φ(Λ,a)−1

)
(5.3.20)

Proof. At first, suppose we are given a future-directed timelike four-momentum P ∈ V
and an angular momentum tensor J ∈ ∧2 V∗, as well as a future-directed timelike vector
f for the definition of an SSC. In addition, fix a Poincaré transformation (Λ, a) ∈ P .
If we now consider (a) the SSC worldline for P and J with respect to f , and (b) the
SSC worldline for the transformed four-momentum P′ = ΛP and angular momentum
J′ = ((Λ−1)> ⊗ (Λ−1)>)J + a[ ∧ (Λ−1)>P[ (compare (5.2.20b)) with respect to the
transformed vector Λ f , it is easy to check that the second worldline is the Poincaré
transform by (Λ, a) of the first. That is, by Poincaré transforming the four-momentum
and angular momentum of the system as well as the ‘direction vector’ for the SSC, we
Poincaré transform the SSC worldline.

Now, the SSC position χ(Σ)(γ) is defined to be the intersection of the hyperplane Σ
with the SSC worldline of γ with respect to f (Σ)(γ). Thus, the ‘new position’

χ
(
(Λ, a) · Σ

)(
Φ(Λ,a)(γ)

)
(5.3.21)
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is the intersection of the transformed hyperplane (Λ, a) ·Σ with the SSC worldline of the

transformed system Φ(Λ,a)(γ) with respect to the transformed vector Λ ·
(

f (Σ)(γ)
)

,
where we used the covariance requirement (5.3.19). But according to our earlier
considerations, this means that the ‘new position’ is the intersection of the transformed
hyperplane with the transform of the original SSC worldline – i.e. the transform of the
original position χ(Σ)(γ). This means that the position observable is covariant.

Since the vectors defining the centre of energy, the centre of inertia and the Newton–
Wigner position satisfy (5.3.19), all of these are covariant position observables. We
stress once more that for this to be true we need to take into account the action of the
Poincaré group on SpHP. This remark is particularly relevant in the Newton–Wigner
case, in which f is the sum of two vectors, u and P/(mc), the first being associated to
an element of SpHP and the second to an element of Γ. Covariance cannot be expected
to hold for non-trivial actions on Γ alone. In the next section we will offer an insight as
to why this somewhat ‘hybrid’ combination for f in terms of an ‘external’ vector u and
an ‘internal’ vector P/(mc) appears. The latter is internal, or dynamical, in the sense
that it is defined entirely by the physical state of the system, i.e. a point in Γ, while the
former is external, or kinematical, in the sense that it refers to the choice of Σ ∈ SpHP,
which is entirely independent of the physical system and its state.

Finally, we will need the following well-known result for SSCs with respect to different
vectors f , which was first shown by Møller in 1949 in [Møl49]; see also [Giu15, theorem
17] for a recent and more geometric discussion:

Theorem 5.3.6 (Møller disc and radius). Suppose we are given the future-directed timelike
four-momentum vector P ∈ V and the angular momentum tensor J ∈ ∧2 V∗ of some physical
system. Consider the bundle of all possible SSC worldlines (5.3.13) for this system, defined
by considering all future-directed timelike vectors f . The intersection of this bundle with any
hyperplane Σ ∈ SpHP orthogonal to P is a two-dimensional disc (the so-called Møller disc)
in the plane orthogonal to the Pauli–Lubański vector W = (∗(P[ ∧ J))], whose centre is the
centre of inertia on Σ and whose radius is the Møller radius

RM =
S

mc
, (5.3.22)

where S =
√

W2/(mc) is the spin of the system and m =
√
−P2/c its mass.

5.3.3. The centre of spin condition

For a system with timelike four-momentum, the Pauli–Lubański vector W has the
interpretation of being (mc times) the spin vector in the momentum rest frame. We now
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define the spin vector in an arbitrary Lorentz frame by boosting W/(mc) to the new
frame:

Definition 5.3.7. Given the timelike four-momentum P ∈ V and the Pauli–Lubański
vector W ∈ P⊥ of a physical system, its spin vector in the Lorentz frame given by the
future-directed unit timelike vector u is

s(u) := B(u) · W
mc

, (5.3.23)

where B(u) ∈ L↑+ is the unique Lorentz boost with respect to P
mc (i.e. containing P

mc in
its timelike 2-plane of action) that maps P

mc to u, with m =
√
−P2/c being the mass. In

terms of components, this boost is given by9

Bµ
ν(u) = δ

µ
ν +

(
Pµ

mc + uµ
) (

Pν
mc + uν

)
1− u · P

mc
− 2

uµPν

mc
. (5.3.24)

Definition 5.3.8. A centre of spin position observable for a classical Poincaré-invariant
system (Γ, ω, Φ) with timelike four-momentum is a position observable χ satisfying

sµ(u) = −
1
2

εµνρσuνSρσ(u), (5.3.25)

where Sρσ(u) := Jµν − χµ(u, τ)Pν + χν(u, τ)Pµ is the spin tensor10 with respect to χ.
Expressed in terms of the Hodge operator, this condition reads

s(u) = (∗(u[ ∧ S(u)))]. (5.3.26)

With respect to an orthonormal basis {u = e0, . . . , e3} adapted to u, the centre of spin
condition takes the form

s0(u) = 0, sa(u) = −
1
2

εa0ρσSρσ(u) =
1
2
(3)εabcSbc(u), (5.3.27)

through which it acquires an immediate interpretation: a position observable is a centre
of spin if and only if, for any Lorentz frame u, the spin vector defined by boosting the
Pauli–Lubański vector to u really generates spatial rotations around the point given by
the position observable.

9Generally, given two unit timelike future-pointing vectors n1 and n2, then the boost that maps n1 onto
n2 and fixes the spacelike plane orthogonal to span{n1, n2} is given by the combination ρn1+n2 ◦ ρn1 of
two hyperplane-reflections, where ρn := idV − 2 n⊗n[

n2 is the reflection at the hyperplane orthogonal to
n. Setting n1 = P/(mc) and n2 = u gives (5.3.24).

10Since ∂χ(u,τ)
∂τ is proportional to P, the spin tensor is independent of τ.
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We will now rewrite the centre of spin condition. Since S(u) = J − (χ(u, τ))[ ∧ P[,

we can rewrite the Pauli–Lubański vector as W =
[
∗
(

P[

mc ∧ J
)]]

=
[
∗
(

P[

mc ∧ S(u)
)]]

.
Thus, the centre of spin condition takes the form

(B(u)−1)>
[
∗
(

P[

mc
∧ S(u)

)]
= ∗(u[ ∧ S(u)). (5.3.28)

Since B(u) is a Lorentz transformation, i.e. an isometry of (V, η), and it maps P/(mc)
to u, this is equivalent to

u[ ∧
(
(B(u)−1)> ⊗ (B(u)−1)>

)
(S(u)) = u[ ∧ S(u). (5.3.29)

Using the explicit form (5.3.24) of B(u), we see that

(
(B(u)−1)> ⊗ (B(u)−1)>

)
(S(u)) = S(u) +

P[

mc ∧
(

ιu+ P
mc

S(u)
)

1− u · P
mc

+ u[ ∧ (. . .). (5.3.30)

Thus, we have the following:

Lemma 5.3.9. The centre of spin condition is equivalent to

u[ ∧ P[ ∧
(

ιu+ P
mc

S(u)
)
= 0. (5.3.31)

Since the Newton–Wigner position observable is defined by the SSC ιu+ P
mc

S(u) = 0,
the preceding result immediately implies

Theorem 5.3.10. The Newton–Wigner position observable χNW is a centre of spin.

Further rewriting the centre of spin condition, we see that (5.3.31) is equivalent to

ιu+ P
mc

S(u) ∈ span{u[, P[}. (5.3.32)

Due to the antisymmetry of S(u), this is equivalent to

ιu+ P
mc

S(u) ∈ span

{
u[ − P[

mc

}
. (5.3.33)

Using this, we can show:

Lemma 5.3.11. χ is a centre of spin ⇐⇒ χ(u, τ)− χNW(u, τ) ∈ span{u, P}.
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Proof. Writing D := χ(u, τ) − χNW(u, τ), the spin tensor of χ may be expressed as
S(u) = SNW(u)− D[ ∧ P[. Thus, (5.3.33) is equivalent to

ιu+ P
mc
(D[ ∧ P[) ∈ span

{
u[ − P[

mc

}
. (5.3.34)

We have ιu+ P
mc
(D[ ∧ P[) = (D · u + D·P

mc )P[ − (P · u−mc)D[, and thus (5.3.34) implies

that for all v ∈ u⊥ ∩ P⊥, we have
v · D = 0. (5.3.35)

But this means D ∈ (u⊥ ∩ P⊥)⊥ = span{u, P}.
Conversely, if D ∈ span{u, P}, we have ιu+ P

mc
(D[ ∧ P[) ∈ span

{
ιu+ P

mc
(u[ ∧ P[)

}
. But

now

ιu+ P
mc
(u[ ∧ P[) =

(
−1 + u · P

mc

)
P[ − (u · P−mc)u[ = (mc− u · P)

(
u[ − P[

mc

)
,

(5.3.36)
and thus we have (5.3.34), i.e. χ is a centre of spin.

We can now prove the main result of this section.

Theorem 5.3.12. The Newton–Wigner position observable χNW is the only centre of spin
position observable that is continuous and defined by an SSC.

Proof. Let χ be an SSC position observable. Writing D(u, τ) := χ(u, τ) − χNW(u, τ),
we know by the Møller disc theorem (theorem 5.3.6) that the projection of D(u, τ)

orthogonal to P is orthogonal to the Pauli–Lubański vector W. Thus, since P itself is
orthogonal to W, we have

D(u, τ) ⊥W (5.3.37)

for any (u, τ) ∈ SpHP. In addition, we know that D(u, τ) ⊥ u; in particular, D(u, τ) is
spacelike for any (u, τ) ∈ SpHP.

Now suppose that χ is a centre of spin. By lemma 5.3.11 this means that

D(u, τ) ∈ span{u, P} (5.3.38)

for all (u, τ) ∈ SpHP. Using (5.3.37) and P ⊥W, we conclude that

for all u with u ·W 6= 0 : D(u, τ) ∈ span{P}. (5.3.39)

Since D(u, τ) has to be spacelike, we thus have shown

D(u, τ) = 0 for all u with u ·W 6= 0. (5.3.40)
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If W 6= 0, the set of future-directed unit timelike u satisfying u ·W 6= 0 is dense in the
hyperboloid of all possible u, and thus assuming continuity of χ, we conclude that
D(u, τ) = 0 for all u, finishing the proof.

If W = 0, then by the Møller disc theorem all SSC worldlines coincide, and thus we
also have χ = χNW.

Looking back into the various steps of the proofs it is interesting to note how the
‘extrinsic–intrinsic’ combination u + P/(mc) for f came about. It entered through the
unique boost transformation (5.3.24) that was needed in order to transform an intrinsic
quantity to an externally specified rest frame. The intrinsic quantity is the spin vector
in the momentum rest frame, i.e. the Pauli–Lubański vector, which is a function of Γ
only, and the externally specified frame is defined by u, which is independent of Γ and
determined through the choice of Σ ∈ SpHP.

5.4. A Newton–Wigner theorem for classical
elementary systems

For elementary Poincaré-invariant quantum systems – i.e. quantum systems with an
irreducible unitary action of the Poincaré group – the Newton–Wigner position operator
is uniquely characterised by transforming ‘as a position should’ under translations,
rotations and time reversal, having commuting components and satisfying a regularity
condition. This has been well-known since the original publication by Newton and
Wigner [NW49]. As advertised in the introduction, we shall now prove an analogous
statement for classical systems.

For the whole of this section, we fix a future-directed unit timelike vector u defining
a Lorentz frame, and an adapted positively oriented orthonormal basis {u = e0, . . . , e3}.
Unless otherwise stated, phrases such as ‘temporal’, ‘spatial’ and the like refer to the
preferred time direction given by u. We will raise and lower spatial indices by the
Euclidean metric δ induced by the Minkowski metric η on the orthogonal complement
of u; the components of δ in the adapted basis are simply given by the usual Kronecker
delta. We denote the spatial volume form by (3)ε = ιuε.

Similar to the notation introduced in chapter 2, we will employ a ‘three-vector’
notation for spatial vectors, for example writing A = (Aa). We then use the usual
three-vector notations for the Euclidean scalar product A · B = AaBa, the Euclidean
norm |A| :=

√
A2 and the vector product (A× B)a = (3)εabc AbBc.
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5.4.1. Classical elementary systems

In the quantum case, an elementary system is given by a Hilbert space with an irreducible
unitary action of the Poincaré group – i.e. each state of the system is connected to any
other by a Poincaré transformation. In direct analogy, we define the notion of a classical
elementary system:

Definition 5.4.1. A classical elementary system is a classical Poincaré-invariant system
(Γ, ω, Φ), where Φ is a transitive action of the proper orthochronous Poincaré group
P↑+.

Note the we only assumed an action of the identity connected component of the
Poincaré group, whereas Arens in [Are71b] considered the whole Poincaré group. In
the classical context, simple transitivity replaces irreducibility in the quantum case.

Arens classified the classical elementary systems11 in [Are71b]; the classification
proceeds in terms of the system’s four-momentum and Pauli–Lubański vector (similar
to the Wigner classification in the quantum case [Wig39]). We are only interested in
the case of timelike four-momentum. For this case, the phase space can be explicitly
constructed as follows:

Theorem 5.4.2 (Phase space of a classical elementary system). Any classical elementary
system with timelike four-momentum is equivalent (in the sense of a symplectic isomorphism
respecting the action of P↑+) to precisely one of the following two cases:

(i) (Spin zero, one parameter m ∈ R+)

• Phase space Γ = T∗R3 with coordinates (x, p), symplectic form ω = dxa ∧ dpa

• Poincaré generators (i.e. component functions of the momentum map):

spatial translations Pa = pa (5.4.1a)

time translation P0 = −
√

m2c2 + p2 (5.4.1b)

rotations Jab = xa pb − xb pa (5.4.1c)

boosts Ja0 = P0xa (5.4.1d)

(ii) (Spin non-zero, two parameters m, S ∈ R+)

11In fact, Arens classified what he called one-particle elementary systems (systems that admit a map from
Γ to the set of lines in Minkowski space which is equivariant with respect to a certain subgroup of P↑+).
However, he also proved that this ‘one-particle’ condition is fulfilled for an elementary system if and
only if the four-momentum is not zero.
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• Phase space Γ = T∗R3 × S2 with coordinates (x, p) for T∗R3, symplectic form
ω = dxa ∧dpa + S ·dΩ2 where dΩ2 is the standard volume form on S2. We denote
the phase space function projecting onto the second factor S2 by ŝ : Γ→ S2 ⊂ R3.
The spin vector observable is the S2

S-valued phase space function s := S · ŝ; its
components satisfy the Poisson bracket relations

{sa, sb} = (3)εabcsc. (5.4.2)

Here S2
S ⊂ R3 denotes the 2-sphere of radius S in R3.

• Poincaré generators (i.e. component functions of the momentum map):

spatial translations Pa = pa (5.4.3a)

time translation P0 = −
√

m2c2 + p2 (5.4.3b)

rotations Jab = xa pb − xb pa +
(3)εabcsc (5.4.3c)

boosts Ja0 = P0xa −
(p× s)a

mc− P0
(5.4.3d)

Note that in fact the explicit construction of the systems in [Are71b] as co-adjoint
orbits of P↑+ is quite different in appearance to the forms given above. However, one can
show that the above systems are indeed elementary systems (i.e. that the action of P↑+ is
transitive), and thus due to Arens’ uniqueness result they are possible representatives of
their respective classes. We will use the forms given above, which were anticipated by
Bacry in [Bac67], since they will be easier to explicitly work with. To unify notation, we
let S = 0, s := 0 in the case of zero-spin systems. Furthermore, we introduce the open
subset of phase space Γ∗ := Γ \ {|P| = 0} and the S2-valued function P̂ := P

|P| on Γ∗.
Using the explicit form of the systems given in theorem 5.4.2, one directly checks:

Lemma 5.4.3. For a classical elementary system with timelike four-momentum, the functions
Pa, P̂ · s (or just the Pa in the case of zero spin) form a complete involutive set on Γ∗ (or the
whole of Γ in the case of zero spin).

The behaviour of the momentum and spin vectors under translations and rotations is
also easily obtained:

Lemma 5.4.4. For a classical elementary system with timelike four-momentum, P and s are
invariant under translations and ‘transform as vectors’ under spatial rotations, i.e. we have

{Pa, Vb} = 0, {Jab, Vc} = δacVb − δbcVa for V = P, s. (5.4.4)

Proof. For P, these are part of the Poincaré algebra relations and thus true by definition.
For s, they are easily confirmed using the explicit form of the Poincaré generators.
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5.4. A Newton–Wigner theorem for classical elementary systems

For our considerations, we will need to know how the time reversal operation with
respect to the hyperplane in M through the origin o ∈ M and orthogonal to u = e0 is
implemented on phase space. In order to get this right, we recall that the incorporation
of time reversal in the context of special relativity corresponds, by its very definition,
to a particular upward Z2 extension12 of P↑+, i.e. the formation of a new group called
P↑+ ∪ P

↓
− of which P↑+ is a normal subgroup with (P↑+ ∪ P

↓
−)/P

↑
+
∼= Z2. It is the

particular nature of this extension that eventually defines what is meant by time reversal:
it consists in the requirement that the outer automorphism induced by the only non-
trivial element of Z2 on the Lie algebra p of P↑+ shall be the one which reverses the sign
of spatial translations and rotations and leaves invariant boosts and time translations;
see, e.g., [BL68]. Implementing time reversal on phase space then means to extend the
action of P↑+ to an action of P↑+ ∪ P

↓
−.

Now, according to this scheme, we can immediately write down how our particular
time reversal transformation on phase space, Tu : Γ→ Γ, acts on the Poincaré generators,
i.e. the component functions of the momentum map:

Pa ◦ Tu = −Pa , Jab ◦ Tu = −Jab , Ja0 ◦ Tu = Ja0 , P0 ◦ Tu = P0 (5.4.5)

From this the well-known result follows that time reversal (as defined above) necessarily
corresponds to an anti-symplectomorphism (inverting the sign of the symplectic form).
Hence, in the process of extending our symplectic action of P↑+ on Γ to an action of
P↑+ ∪ P

↓
− satisfying the time reversal criterion above, we had to generalise to possibly

anti-symplectomorphic actions. This is akin to the situation in quantum mechanics,
where, as is well-known, time reversal necessarily corresponds to an anti-unitary
transformation.

It is now clear how time reversal is implemented in the case at hand:

Lemma 5.4.5. For an elementary system as in theorem 5.4.2, time reversal with respect to the
hyperplane through the origin and orthogonal to u = e0 is given by

Tu : (x, p, ŝ) 7→ (x,−p,−ŝ). (5.4.6)

Unless otherwise stated, in the following we will always mean time reversal with
respect to the hyperplane through the origin and orthogonal to u = e0 when saying
‘time reversal’.

12Here we are using the terminology of [Con+85, p. xx], according to which a group G with normal
subgroup A and quotient G/A ∼= B is either called an upward extension of A by B or a downward
extension of B by A.
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5.4.2. Statement and interpretation of the Newton–Wigner theorem

The classical Newton–Wigner theorem we are going to prove can be formulated very
similar to the quantum case:

Theorem 5.4.6 (Classical Newton–Wigner theorem). For a classical elementary system with
timelike four-momentum, there is a unique R3-valued phase space function X that

(i) is C1,

(ii) has Poisson-commuting components,

(iii) satisfies the canonical Poisson relations {Xa, Pb} = δa
b with the generators of spatial

translations with respect to u = e0,

(iv) transforms ‘as a (position) vector’ under spatial rotations with respect to u = e0, i.e.
satisfies {Jab, Xc} = δc

aXb − δc
bXa, and

(v) is invariant under time reversal with respect to the hyperplane through the origin and
orthogonal to u = e0, i.e. satisfies X ◦ Tu = X.

In terms of the Poincaré generators, it is given by

Xa = −
Ja0

mc
− JabPb

mc(mc− P0)
− Jb0Pb

P0mc(mc− P0)
Pa , (5.4.7)

where m =
√

P2
0 − P2/c is the mass of the system.

Before proving the theorem in the next section, we will now discuss the interpretation
of the ‘position’ X it characterises. We want to interpret the value of X (in some state
γ ∈ Γ) as the spatial components of a point in Minkowski spacetime M. Since X is
invariant under time reversal with respect to the hyperplane through the origin and
orthogonal to u = e0, it can be interpreted as defining a point on this hyperplane. Thus,
if we want to use the phase space function from the Newton–Wigner theorem to define
a position observable χ in the sense of section 5.3.1, we should set (in our basis adapted
to u)

χa(u, τ = 0) := Xa , χ0(u, τ = 0) := 0. (5.4.8)

The transformation behaviour of X under spatial translations and rotations (i.e. as-
sumptions (iii) and (iv) of theorem 5.4.6) will then ensure that the position observable
χ be covariant (in the sense of definition 5.3.2) regarding these transformations.

In fact, comparing (5.4.7) to the expression (5.3.17) for the Newton–Wigner position
observable χNW, we see that we have (in our adapted basis)

χNW,a(u, τ = 0) = Xa , χNW,0(u, τ = 0) = 0 : (5.4.9)
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5.4. A Newton–Wigner theorem for classical elementary systems

the position X characterised by theorem 5.4.6 is the one given by the Newton–Wigner
position observable χNW on the hyperplane (u, 0) ∈ SpHP (which is a covariant position
observable due to proposition 5.3.5). Let us also remark that since any position
observable’s dependence on τ is fixed by (5.3.8), a position observable satisfying (5.4.8)
is equal to the Newton–Wigner observable χNW on the whole family of hyperplanes
Σ ∈ SpHP with normal vector u.

Combining this identification with the observation that we can freely choose the
origin o ∈ M, we can restate the Newton–Wigner theorem in the following form:

Theorem 5.4.7 (Classical Newton–Wigner theorem, version 2). For a classical elementary
system with timelike four-momentum, given any hyperplane Σ = (u, τ) ∈ SpHP, there is a
unique Σ-valued phase space function χNW(Σ) that

(i) is C1,

(ii) has Poisson-commuting components, i.e.{
χNW,µ(Σ), χNW,ν(Σ)

}
= 0, (5.4.10a)

(iii) satisfies the canonical Poisson relations with the generators of spatial translations with
respect to u, i.e.

vµwν
{

χNW,µ(Σ), Pν

}
= v · w for v, w ∈ u⊥, (5.4.10b)

(iv) transforms ‘as a position’ under spatial rotations with respect to u, i.e. satisfies

vµṽνwρ

{
Jµν, χNW,ρ(Σ)

}
= vµṽνwρ

[
δ

ρ
µχNW

ν (Σ)− δ
ρ
νχNW

µ (Σ)
]

for v, ṽ, w ∈ u⊥,
(5.4.10c)

and

(v) is invariant under time reversal with respect to Σ.

These χNW(Σ) together form the Newton–Wigner observable as given by (5.3.17).

5.4.3. Proof of the Newton–Wigner theorem

Proof of theorem 5.4.6. For the whole of the proof, we will work with the explicit form
of the phase space of our elementary system given in theorem 5.4.2. It is easily verified
that in this explicit form, x (i.e. the coordinate of the base point in T∗R3) is a phase
space function with the properties demanded for X. Thus we need to prove uniqueness.
Our proof will follow the proof of the quantum-mechanical Newton–Wigner theorem
given by Jordan in [Jor80], some parts of which can be applied literally to the classical
case.

We will several times need the following.
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5. Classical perspectives on the Newton–Wigner position observable

Lemma 5.4.8. Consider a classical elementary system with timelike four-momentum, with
phase space Γ, and some open subset Γ̃ of Γ∗ = Γ \ {|P| = 0}. Let f be an R-valued C1

function defined on Γ̃ that is invariant under spatial translations and rotations, i.e. {Pa, f } =
0 = {Jab, f }. Then f is a function of |P|, P̂ · s. 13

Proof. f Poisson-commutes with P and Jab. Therefore it also Poisson-commutes with
P and 1

2
(3)εabcP̂a Jbc = P̂ · s. Now P, P̂ · s form a complete involutive set on Γ∗ (lemma

5.4.3), so since f Poisson-commutes with them, it must be a function of P, P̂ · s. Since f
and P̂ · s are rotation invariant (by lemma 5.4.4), f must be a function of |P|, P̂ · s.

Let now X be an observable as in the statement of theorem 5.4.6, and consider the
difference d := X − x. Due to the assumptions of theorem 5.4.6, d is C1, is invariant
under translations (i.e. {da, Pb} = 0), transforms as a vector under spatial rotations
(i.e. {Jab, dc} = δc

adb − δc
bda) and is invariant under time reversal with respect to the

hyperplane through the origin and orthogonal to u (i.e. d ◦ Tu = d).

Lemma 5.4.9. Let A be a R3-valued C1 phase space function on a classical elementary system
with timelike four-momentum that is invariant under translations, transforms as a vector under
spatial rotations and is invariant under time reversal. Then A · P = 0.

Proof. Since P is invariant under translations and a vector under rotations, A · P is
invariant under translations and rotations. By lemma 5.4.8, A · P|Γ∗ is a function of
|P|, P̂ · s. This means we have

A · P|Γ∗ = F(|P|, P̂ · s) (5.4.11)

for some function F : R+ × [−S, S]→ R.
Now considering time reversal Tu, on the one hand we have (using lemma 5.4.5)

|P| ◦ Tu = |P ◦ Tu| = | − P| = |P| (5.4.12a)

13By ‘ f is a function of |P|, P̂ · s ’ we mean that f depends on phase space only via |P|, P̂ · s, i.e. that there
is a C1 function F : U → R, U =

{
(|P|(γ), (P̂ · s)(γ)) : γ ∈ Γ̃

}
⊂ R+ × [−S, S] satisfying

f (γ) = F(|P|(γ), (P̂ · s)(γ)) for all γ ∈ Γ̃.
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5.4. A Newton–Wigner theorem for classical elementary systems

and

(P̂ · s) ◦ Tu =

(
1
2
(3)εabcP̂a Jbc

)
◦ Tu

=
1
2
(3)εabc(P̂a ◦ Tu)(Jbc ◦ Tu)

=
1
2
(3)εabc(−P̂a)(−Jbc)

=
1
2
(3)εabcP̂a Jbc

= P̂ · s, (5.4.12b)

implying
F(|P|, P̂ · s) ◦ Tu = F(|P| ◦ Tu, (P̂ · s) ◦ Tu) = F(|P|, P̂ · s). (5.4.13)

On the other hand, A is invariant under time reversal while P changes its sign, implying
that (A · P) ◦ Tu = −A · P. Combining this with (5.4.11) and (5.4.13), we obtain
A · P|Γ∗ = 0, and continuity implies A · P = 0.

For zero spin, we can easily complete the proof of the Newton–Wigner theorem. Since
the difference vector d is translation invariant and the Pa form a complete involutive
set on Γ, d must be a function of P. Then since it is a vector under rotations, it must be
of the form

d(P) = F(|P|)P (5.4.14)

for some function F of |P|. Then, since according to lemma 5.4.9 d · P is zero, d is zero.
Thus, for the spin-zero case, we have proved the Newton–Wigner theorem without any
use of the condition of Poisson-commuting components of the position observable.

For the non-zero spin case, we continue as follows.

Lemma 5.4.10. Let A be a R3-valued C1 phase space function on a classical elementary system
with timelike four-momentum and non-zero spin that is invariant under translations, transforms
as a vector under spatial rotations and satisfies A · P = 0. Then it is of the form

A = BP̂× s + CP̂× (P̂× s) (5.4.15)

on Γ∗ \ {s ‖ P̂}, where B and C are C1 functions of |P| and P̂ · s, i.e. C1 functions

B, C : R+ × (−S, S)→ R.

Proof. For the whole of this proof, we will work on Γ̃ := Γ∗ \ {s ‖ P̂}. Since evaluated
at each point of Γ̃, the R3-valued functions P̂, P̂× s, P̂× (P̂× s) form an orthogonal
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basis of R3, and since we have A · P = 0, we can write A in the form (5.4.15) with
coefficients B, C given by

B =
A · (P̂× s)
|P̂× s|

, (5.4.16)

C =
A · (P̂× (P̂× s))
|P̂× (P̂× s)|

. (5.4.17)

Since A, P and s are invariant under translations and vectors under rotations, these
equations imply that B, C are invariant under translations and rotations. The result
follows with lemma 5.4.8.

Now we consider again the difference vector d = X − x. It satisfies d · P = 0 by
lemma 5.4.9, and thus we have

X · P = x · P. (5.4.18)

Since we assume that the components of X Poisson-commute with each other and that
{Xa, Pb} = δa

b , this implies

{Xa, x · P} = {Xa, X · P} = Xa. (5.4.19)

Combining this with {xa, x · P} = xa, we obtain

{da, x · P} = da. (5.4.20)

On the other hand, for any function F of P and s, we have

{F(P, s), x · P} = {F(P, s), xa}Pa = −
∂F(P, s)

∂Pa
Pa = −|P|

∂F
∂|P|

∣∣∣∣
P̂=const.,s=const.

. (5.4.21)

This implies

d = −|P| ∂d
∂|P|

∣∣∣∣
P̂=const.,s=const.

. (5.4.22)

Combining lemmas 5.4.9 and 5.4.10, we know that d has the form (5.4.15) on Γ∗ \ {s ‖ P̂}
for two functions B, C : R+ × (−S, S)→ R. Thus (5.4.22) implies the two equations

B(|P|, P̂ · s) = −|P|∂B(|P|, P̂ · s)
∂|P| , C(|P|, P̂ · s) = −|P|∂C(|P|, P̂ · s)

∂|P| (5.4.23)

on R+ × (−S, S). These equations determine the |P| dependence of B and C; they must
be proportional to |P|−1. However, for d to be C1 on the whole of Γ, in fact for (5.4.15)
not to diverge as |P| → 0 even when coming from a single direction P̂, we then need B
and C to vanish. Continuity implies d = 0 on all of Γ. This finishes the proof of the
Newton–Wigner theorem.
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5.5. Conclusion

In this chapter we have studied the localisation problem for classical system whose
phase space is a symplectic manifold. We focussed on the Newton–Wigner position
observable and asked for precise characterisations of it in order to gain additional
understanding, over and above that already known from its practical use for the solution
of concrete problems of motion, e.g., in general-relativistic astrophysics [Ste11; SJ18].
We proved two theorems that we believe advance our understanding in the desired
direction: first we showed how Fleming’s geometric scheme [Fle65] in combination with
the characterisation of worldlines through SSCs (Spin Supplementary Conditions) allows
to give a precise meaning to, and proof of, the fact that the Newton–Wigner position
is the unique centre of spin. Given that interpretation, it also offers an insight as to
why the Newton–Wigner SSC uses a somewhat unnatural looking ‘hybrid’ combination
f = u + P

mc , where u is ‘external’ or ‘kinematical’, and P is ‘internal’ or ‘dynamical’.
Then, restricting to elementary systems, i.e. systems whose phase space admits a
transitive action of the proper orthochronous Poincaré group, we proved again a
uniqueness result to the effect that the Newton–Wigner observable is the unique phase
space function whose components satisfy the ‘familiar’ Poisson relations, provided
it is continuously differentiable, time-reversal invariant, and transforms as a vector
under spatial rotations. These properties seem to be the underlying reason for the
distinguished rôle it plays in solution strategies like those of [Ste11; SJ18], despite the
fact that on a more general level of theorisation other choices (characterised by other
SSCs) are often considered more appropriate; see, e.g., [PLS15]. We believe that our
results add a conceptually clear and mathematically precise Hamiltonian underpinning
of what the choice of the Newton–Wigner observable entails, at least in a special-
relativistic context or, more generally, in general-relativistic perturbation theory around
Minkowski space.
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In this thesis, we have developed and analysed systematic methods for the description
of quantum-mechanical systems to post-Newtonian gravitational fields. As explained
in the introduction, we see the virtue of our systematic calculations in their firm rooting
in explicitly spelled out principles, that leave no doubt concerning the questions of
consistency and completeness of the obtained ‘relativistic corrections’. This, in our
opinion, distinguishes our work from previous ones by other authors, who were also
concerned with the coupling of composite particle quantum systems – like atoms or
molecules – to external gravitational fields, who phrase their account of ‘relativistic
corrections’ in terms of semi-classical notions, like smooth worldlines and comparisons
of their associated lengths (i.e. ‘proper time’ and ‘redshift’); e.g. [Dim+08; Zyc+11;
Pik+15; Rou18; Gie+19; Lor+19; ZRP19]. In our opinion, answers to the fundamental
question of gravity–matter coupling in quantum mechanics should not be based on a
priori restricted states that imply a semi-classical behaviour of some of the (factorising)
degrees of freedom. Rather, they should apply to all states in an equally valid fashion.

In chapter 3, we have shown how to systematically derive a Schrödinger equation with
post-Newtonian correction terms describing a single quantum particle in a general post-
Newtonian curved background spacetime by means of a WKB-like formal expansion of
the minimally coupled Klein–Gordon equation. We extended this method to account for,
in principle, post-Newtonian terms of arbitrary orders in c−1, although it gets recursive
at higher orders, making it computationally more difficult to handle than methods
based on formal quantisation of the classical description of the particle. Nevertheless,
we believe this scheme to be better suited for concrete predictions, since it is more firmly
based on first principles and also more systematic than ad hoc canonical quantisation
or path integral procedures as employed widely in the literature. For example, no
operator ordering ambiguities arise; instead, the WKB method can be seen as predicting
the ordering.

Comparing the Klein–Gordon expansion method to canonical quantisation, we have
found that in the case of a general metric, even at lowest post-Newtonian order, the
two procedures lead to slightly different quantum Hamiltonians, independent of ordering
ambiguities1. For the concrete case of the metric of the Eddington–Robertson PPN test

1At least if only simple symmetrising procedures are allowed for as ordering schemes in canonical
quantisation, see the discussion at the end of section 3.4.2.

111



6. Conclusion

theory, the Hamiltonians obtained from the two methods differ in a term including the
Eddington–Robertson parameter γ, depending on the ordering scheme employed in
canonical quantisation. Although the relevant term is proportional to the Laplacian
of the Newtonian potential, i.e. (in lowest order) to the mass density generating the
gravitational field, and thus is irrelevant in physical situations concerning the outside
of the generating matter distribution, this example shows that for the interpretation
of tests of general relativity with quantum systems, the method used to derive the
quantum Hamiltonian plays a decisive rôle.

For the case of stationary background metrics, without employing any expansion of
the metric, we showed that up to linear order in spatial momenta, the Hamiltonians
obtained from canonical quantisation and from the Klein–Gordon equation agree. In
particular, this means that the lowest-order coupling to the ‘gravitomagnetic’ field
components g0a is independent of the gravity–quantum matter coupling method.

Concerning the applicability of the WKB-like expansion method for concrete calcu-
lations, it could be an interesting question for future research if and how the trans-
formation of the Hamiltonian from the Klein–Gordon inner product to an L2-scalar
product – be it flat or with respect to the induced metric measure – can be implemented
more systematically, not relying on direct calculations with the already-computed
Hamiltonian.

Turning to the description of composite systems, in chapter 4 we extended the
calculation of [SB18] of a Hamiltonian describing an electromagnetically interacting
two-particle system so as to include post-Newtonian gravity as described by the
Eddington–Robertson PPN metric. Starting from first principles, we performed a post-
Newtonian expansion in terms of the inverse velocity of light that led to leading-order
corrections comprising special- and general-relativistic effects. The former were fully
encoded in [SB18], but the latter are new. As in [SB18] we neglected all terms of third
and higher order in c−1, which physically means that we neglected radiation-reaction
and also that we avoided obstructions on the applicability of the Hamiltonian formalism
that result from the infamous ‘no-interaction theorem’ [CJS63; SM16], whose impact
only starts at the 6th order in a c−1 expansion [MS78].

Similar to the gravity-free case, we now derived the result that the centre of mass
motion of the system can be viewed as that of a ‘composite point particle’, including in
its mass the internal energy of the system. This result may be anticipated in a heuristic
fashion on semi-classical grounds, but, as seen, its proper derivation requires some
efforts. We stress once more that for this interpretation it was crucial to express the
Hamiltonian in terms of the physical space-time metric. As a result, our work lends
some justification to current experimental proposals in atom interferometry that so
far were based on these heuristic ideas, on the basis of which completeness of the
relativistic effects could not be reliably judged; e.g. [Zyc+11; Pik+15; Rou18; Gie+19;
Lor+19; ZRP19].
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However, in order to obtain a fully solid framework for the discussion of atom
interferometry in post-Newtonian gravity, stopping at the Hamiltonian is not enough:
one has to describe the whole experimental situation solely in terms of operationally
defined quantities. Such a systematic operational analysis of atom interferometers
under gravity, which is now possible based on the Hamiltonian we obtained, we see
as the most important future application of the results of this thesis. This may lead
to interesting new possibilities of testing gravitational effects with quantum systems:
in particular it might enable the measuring of post-Newtonian parameters, i.e. proper
tests of general relativity, with laboratory experiments.
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A. Calculation of the classical
Hamiltonian of a free particle

Here, we will give a full exposition of the calculation of the classical Hamiltonian of a
free particle in a curved spacetime in 3 + 1 decomposition.

In 3 + 1 decomposition, spacetime is foliated into three-dimensional spacelike
Cauchy surfaces that are labelled by a ‘foliation parameter’ t. We employ adapted
coordinates (x0 = ct, xa) where xa are coordinates on these Cauchy surfaces. This gives
a decomposition of the spacetime metric as

gab =
(3)gab, g0a =

(3)gabβb =: βa, g00 = −α2 + (3)gabβaβb , (A.1)

where (3)g is the induced metric on the Cauchy surfaces, β is the shift vector field and α

is the lapse function. Geometrically speaking, lapse and shift arise from decomposing
the ‘time evolution’ vector field1 ∂0 = c−1∂/∂t into its components tangential and
normal to the Cauchy surfaces as

1
c

∂

∂t
= αn + β, (A.2)

where n is the future-directed unit normal to the Cauchy surfaces and β is the tangential
component [Giu14, (17.44)].

Parametrising the worldline of a free particle by t, its Lagrangian (compare the
classical action (3.2.1)) in these coordinates is

L = −mc
√
−gµν ẋµ ẋν = −mc

(
α2c2 − (3)gabβaβbc2 − 2c (3)gab ẋaβb − (3)gab ẋa ẋb

)1/2
,

(A.3)
where a dot denotes differentiation with respect to t.

1Denoting the embeddings defining the foliation as Et : Σ→ M, t ∈ R where Σ is the abstract Cauchy
surface, the time evolution vector field is given as the derivation

∂

∂t

∣∣∣∣
Es(q)

f :=
d

ds′
f (Es′ (q))

∣∣∣∣
s′=s

for q ∈ Σ, s ∈ R and f ∈ C∞(M); i.e. this vector field is independent of the choice of coordinates and
depends just on the foliation, even if it was expressed above as a coordinate vector field. [Giu14, (17.43)]
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From this, we compute the momentum pa conjugate to xa to be

pa =
∂L
∂ẋa =

mc
(. . .)1/2 (cβa +

(3)gab ẋb). (A.4)

Contracting with the inverse (3)gab of (3)gab, we obtain

ẋa =
(. . .)1/2

mc
(3)gab pb − cβa . (A.5)

To fully express the velocity ẋa in terms of the momentum pa, we have to express

(. . .)1/2 =
(

α2c2 − (3)g(ẋ + cβ, ẋ + cβ)
)1/2

in terms of pa. Using (A.5), we have

(3)g(ẋ + cβ, ẋ + cβ) =
(. . .)
m2c2

(3)gab pa pb

=
α2c2 − (3)g(ẋ + cβ, ẋ + cβ)

m2c2
(3)gab pa pb . (A.6)

Writing (3)g−1(p, p) := (3)gab pa pb, this is equivalent to

(3)g(ẋ + cβ, ẋ + cβ) =
α2 (3)g−1(p, p)

m2
1

1 + (3)g−1(p, p)/(m2c2)

=
c2α2 (3)g−1(p, p)

m2c2 + (3)g−1(p, p)
(A.7)

Using this, we get

(. . .)1/2 =

(
α2c2 − c2α2 (3)g−1(p, p)

m2c2 + (3)g−1(p, p)

)1/2

=
mc2α[

m2c2 + (3)g−1(p, p)
]1/2 . (A.8)

Inserting (A.8) into (A.5), we can express the velocities in terms of the momenta as

ẋa =
αc[

m2c2 + (3)g−1(p, p)
]1/2

(3)gab pb − cβa . (A.9)

Using (A.8) and (A.9), the Hamiltonian corresponding to the Lagrangian (A.3) is

H = pa ẋa − L

=
αc[

m2c2 + (3)g−1(p, p)
]1/2

(3)g−1(p, p)− cβa pa +
m2c3α[

m2c2 + (3)g−1(p, p)
]1/2

= αc
[
m2c2 + (3)g−1(p, p)

]1/2
− cβa pa . (A.10)

Rewriting this in terms of the components of the spacetime metric using the relations
g00 = −α−2, g0a = α−2βa, gab = (3)gab − α−2βaβb, the Hamiltonian reads

H =
1√
−g00

mc2
[

1 +
(

gab − 1
g00 g0ag0b

)
pa pb

m2c2

]1/2

+
c

g00 g0a pa . (A.11)
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B. Christoffel symbols of the
Eddington–Robertson PPN metric

Here, we compute the Christoffel symbols

Γρ
µν =

1
2

gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (B.1)

of the Eddington–Robertson PPN metric as given by (2.5.1), (2.5.2), keeping full track of
all details of the c−1 expansion.

Γ0
00 =

1
2

g00∂0g00 + O(c−7)

=
1
2

(
1

g00
+ O(c−6)

)
∂0g00 + O(c−7)

=
1
2c

∂tln(−g00)︸ ︷︷ ︸
=2 φ

c2 +2(β−1) φ2

c4 +O(c−6)

+ O(c−7)

=
∂tφ

c3 + 2(β− 1)
φ∂tφ

c5 + O(c−7) (B.2)

Γ0
0a =

1
2

g00(��
�∂0g0a + ∂ag00 −��

�∂0g0a) + O(c−7)

=
1
2

∂a ln(−g00) + O(c−6)

=
∂aφ

c2 + 2(β− 1)
φ∂aφ

c4 + O(c−6) (B.3)

Γ0
ab =

1
2

g00(∂ag0b + ∂bg0a︸ ︷︷ ︸
=O(c−5)

− ∂0gab) + O(c−7)

=
1
2
(
−1 + O(c−2)

) −1
c

∂t

((
1− 2γ

φ

c2

)
δab + O(c−4)

)
+ O(c−5)

= −γ
∂tφ

c3 δab + O(c−5) (B.4)
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B. Christoffel symbols of the Eddington–Robertson PPN metric

Γa
00 =

1
2

gab(2∂0g0b︸ ︷︷ ︸
=O(c−6)

− ∂bg00) + O(c−7)

=
1
2

((
1 + 2γ

φ

c2

)
δab + O(c−4)

)
∂b

(
1 + 2

φ

c2 + 2β
φ2

c4 + O(c−6)

)
+ O(c−6)

= δab
(

∂bφ

c2 + 2(β + γ)
φ∂bφ

c4

)
+ O(c−6) (B.5)

Γa
0b =

1
2

gac(∂0gbc + ∂bg0c − ∂cg0b︸ ︷︷ ︸
=O(c−5)

) + O(c−7)

=
1
2
(
δac + O(c−2)

) 1
c

∂t

((
1− 2γ

φ

c2

)
δbc + O(c−4)

)
+ O(c−5)

= −γδa
b

∂tφ

c3 + O(c−5) (B.6)

Γa
bc =

1
2

gad(∂bgcd + ∂cgbd − ∂dgbc) + O(c−7)

=
1
2

(
δad + O(c−2)

)
(−2γ)

(
δcd

∂bφ

c2 + δbd
∂cφ

c2 − δbc
∂dφ

c2 + O(c−4)

)
+ O(c−7)

= −γ
δa

c ∂bφ + δa
b∂cφ− δbcδad∂dφ

c2 + O(c−4) (B.7)

The last result implies gbcΓa
bc = δabγ

∂bφ
c2 + O(c−4), in turn implying

gµνΓa
µν = g00Γa

00 + gbcΓa
bc + O(c−8)

= (−1 + O(c−2))

(
δab ∂bφ

c2 + O(c−4)

)
+ δabγ

∂bφ

c2 + O(c−4)

= (γ− 1)δab ∂bφ

c2 + O(c−4). (B.8)
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C. Sign conventions for generators
of special orthogonal groups

Here we discuss our choice of sign convention for the generators of special orthogonal
groups, in particular the Lorentz group.

Let V be a finite-dimensional real vector space with a non-degenerate, symmetric
bilinear form g : V ×V → R. Note that we do not assume anything about the signature
of g. We introduce the ‘musical isomorphism’

V → V∗, v 7→ v[ := g(v, ·) (C.1)

induced by g.
We fix a basis {ea}a of V. As bases for its dual vector space V∗ we distinguish its

natural dual basis {θa}a, where θa(eb) = δa
b , and the (g-dependent) image of {ea}a

under (C.1), which is just {e[a}a, where e[a = gabθb, so that e[a(eb) = gab. The reason for
this will become clear now.

For each a, b ∈ {1, . . . , dim V} we introduce the endomorphism

Bab := ea⊗ e[b− eb⊗ e[a ∈ End(V) (C.2)

which satisfies

g(v, Bab(w)) = g(v, ea)g(eb, w)− g(v, eb)g(ea, w) = −g(Bab(v), w). (C.3)

This means that Bab is anti-self-adjoint with respect to g and hence that it is an element of
the Lie algebra so(V, g) of the Lie group SO(V, g) of special orthogonal transformations
of (V, g):

Bab ∈ so(V, g). (C.4)

As Bab = −Bba, it is the set {Bab : 1 ≤ a < b ≤ dim V} which is linearly independent
and of the same dimension as so(V, g). Hence this set forms a basis of so(V, g) so that
any ω ∈ so(V, g) can be uniquely written in the form

ω = ∑
1≤a<b≤dim V

ωabBab =
1
2

ωabBab , (C.5)

where
ωab = −ωba . (C.6)
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C. Sign conventions for generators of special orthogonal groups

This representation can easily be compared to the usual one in terms of the metric-
independent basis {ea⊗ θb : 1 ≤ a, b ≤ dim V} of End(V) in the following way: for
ω = ωa

c ea⊗ θc, we have ω ∈ so(V, g) if and only if

ωa
c gcb = −ωb

c gca . (C.7)

It is the obvious simplicity of (C.6) as opposed to (C.7) as conditions for ω ∈ End(V)

being contained in so(V, g) ⊂ End(V) that makes it easier to work with the basis
ea⊗ e[b of End(V) rather than ea⊗ θb. Note that the components of ω with respect to
the two bases considered above are connected by the equation

ωab = ωa
c gcb . (C.8)

The basis elements Bab satisfy the commutation relations

[Bab, Bcd] = gbcBad + gadBbc − gacBbd − gbdBac

= gbcBad + (antisymm.), (C.9)

where ‘antisymm.’ denotes antisymmetrisation as shown in the first line of the equation.
From now on, we will assume the basis {ea}a to be orthonormal. For notational

convenience, for a, b ∈ {1, . . . , dim V} we define

εab := gaagbb = ±1 (C.10)

which has the value +1 if gaa = g(ea, ea) and gbb = g(eb, eb) have the same sign, and
−1 if they have opposite signs1.

We now want to compute the exponential exp(αBab) ∈ SO(V, g). At first, we note
that

(Bab)
2 = −gbb ea⊗ e[a−gaa eb⊗ e[b
= −εab Prab , (C.11)

where Prab := Prspan{ea,eb} denotes the g-orthogonal projector onto the plane span{ea, eb}

1Note that repeated indices on the same level, i.e. both up or both down, are not to be summed over.
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in V.2 Using this and Bab ◦ Prab = Bab, the exponential series evaluates to

exp(αBab) = (idV − Prab) +
∞

∑
k=0

1
(2k)!

α2k(−εab)
k Prab

+
∞

∑
k=0

1
(2k + 1)!

α2k+1(−εab)
k Bab ◦ Prab

= (idV − Prab) +

{
cos(α) idV + sin(α) Bab , εab = +1

cosh(α) idV + sinh(α) Bab , εab = −1

}
◦ Prab . (C.12)

Geometrically, this transformation is either a rotation by angle α (for εab = +1) or
a boost by rapidity α (for εab = −1) in the plane span{ea, eb}. The direction of the
transformation depends on the signs of gaa, gbb:

• εab = +1:

(i) gaa = gbb = +1: We have Bab(ea) = − eb, Bab(eb) = ea. Thus, exp(αBab) is a
rotation by α from eb towards ea.

(ii) gaa = gbb = −1: We have Bab(ea) = eb, Bab(eb) = − ea. Thus, exp(αBab) is a
rotation by α from ea towards eb.

• εab = −1:

(i) gaa = +1, gbb = −1: We have Bab(ea) = − eb, Bab(eb) = − ea. Thus,
exp(αBab) is a boost by α ‘away’ from ea + eb.

(ii) gaa = −1, gbb = +1: We have Bab(ea) = eb, Bab(eb) = ea. Thus, exp(αBab) is
a boost by α ‘towards’ ea + eb.

Now we will apply the preceding considerations to the case of (the ‘difference’ vector
space of) Minkowski spacetime, where for now we leave open the signature convention for
the metric (either (+−−−) or (−+++)). We work with respect to a positively oriented
orthonormal basis {eµ}µ=0,...,3 where e0 is timelike. Latin indices will denote spacelike
directions.

2In the general case of two linearly independent vectors v, w ∈ V, not necessarily orthonormal, the
orthogonal projector is given by

Prspan(v,w)= 1
g(v,v)g(w,w)−(g(v,w))2

[
g(w, w) v⊗ v[ + g(v, v) w⊗ w[ − g(v, w) (v⊗ w[ + w⊗ v[)

]
,

implying

(v⊗ w[ − w⊗ v[)2 = −g(w, w) v⊗ v[ − g(v, v) w⊗ w[ + g(v, w) (v⊗ w[ + w⊗ v[)

= −
[

g(v, v)g(w, w)− (g(v, w))2
]

Prspan(v,w).
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C. Sign conventions for generators of special orthogonal groups

In the case of ‘mostly minus’ signature (+−−−), Bab generates rotations from ea

towards eb and Ba0 generates boosts (with respect to e0) in direction of ea. In the case
of ‘mostly plus’ signature (−+++), Bba = −Bab generates rotations from ea towards eb
and B0a = −Ba0 generates boosts (with respect to e0) in direction of ea.

Thus, since we want to use the notation Jab for the spacelike rotational generator
generating rotations from ea towards eb, we have to set

Jµν =

{
Bµν for (+−−−) signature,

−Bµν for (−+++) signature
(C.13)

for the Lorentz generators. Adopting this convention, boosts in direction of ea are then
generated by Ja0. The commutation relations for the Jµν are

[Jµν, Jρσ] =

{
ηµσ Jνρ + (antisymm.) for (+−−−) signature,

ηµρ Jνσ + (antisymm.) for (−+++) signature,
(C.14)

and general Lorentz algebra elements ω ∈ Lie(L) can be written as

ω = ±1
2

ωµν Jµν with ωµν = ω
µ

ρ ηρν (C.15)

in terms of their components ω
µ

ρ as endomorphisms, where the upper/lower sign
holds for (+−−−)/(−+++) signature.
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D. Notes on the adjoint
representation

Here we wish to make a few remarks and collect a few formulae concerning the adjoint
and co-adjoint representation of the general linear group of a vector space V.

In the defining representation on V, an element Λ ∈ GL(V) is given in terms of the
basis {ea}a by the coefficients Λa

b
, where

Λ ea = Λb
a eb . (D.1)

This defines a left action of GL(V) on V. The corresponding left action of GL(V)

on the dual space V∗ is given by the inverse-transposed, i.e. GL(V) × V∗ → V∗,
(Λ, α) 7→ (Λ−1)>α := α ◦ Λ−1. For the basis {θa}a of V∗ dual to the basis {ea}a this
means

θa ◦Λ−1 = (Λ−1)a
b θb . (D.2)

In contrast, for the basis {e[a}a of V∗, this reads in general

e[b ◦Λ−1 = gacgbd(Λ−1)d
c e[a , (D.3)

which for isometries Λ ∈ O(V, g) simply becomes

e[b ◦Λ−1 = Λa
b e[a . (D.4)

The adjoint representation of GL(V) on End(V) ∼= V ⊗V∗ or any Lie subalgebra of
End(V) is by conjugation, which for our basis (C.2) implies, using (D.1) and (D.4),

AdΛBab = Λ ◦ Bab ◦Λ−1 = Λc
aΛd

b Bcd for Λ ∈ O(V, g). (D.5)

The adjoint representation of the inhomogeneous group GL(V)nV on its Lie algebra
End(V)⊕V is given by, for any X ∈ End(V) and y ∈ V,

Ad(Λ,a)(X, y) =
(

Λ ◦ X ◦Λ−1, Λy− (Λ ◦ X ◦Λ−1)a
)

. (D.6)
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D. Notes on the adjoint representation

In the main text we will use this formula for (Λ, a) being replaced by its inverse
(Λ, a)−1 = (Λ−1,−Λ−1a):

Ad(Λ,a)−1(X, y) =
(

Λ−1 ◦ X ◦Λ, Λ−1y + (Λ−1 ◦ X)a
)

(D.7)

Applied to the basis vectors separately, i.e. to (X, y) = (0, eb) and (X, y) = (Bbc, 0), for
Λ ∈ O(V, g) we get

Ad(Λ,a)−1(0, eb) =
(

0, (Λ−1)c
b ec

)
, (D.8a)

Ad(Λ,a)−1(Bbc, 0) =
(
(Λ−1)d

b(Λ
−1)e

c Bde,−ab(Λ−1)d
c ed +ac(Λ−1)d

b ed

)
(D.8b)

where ab := e[b(a) = gbcac in the second equation. From these equations we immediately
deduce (5.2.20) in the case of four spacetime dimensions (greek indices) and signature
mostly plus, in which case Jµν = −Bµν according to (C.13).
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‘Spinning particles in general relativity: Momentum-velocity relation for
the Mathisson-Pirani spin condition’. Phys. Rev. D 97 (2018), 084023. doi:
10.1103/PhysRevD.97.084023 ↪→ 83, 93.

[Con+85] John Horton Conway et al. ATLAS of Finite Groups. Oxford: Clarendon Press,
1985 ↪→ 103.

[COW75] R. Colella, A. W. Overhauser and S. A. Werner. ‘Observation of Gravitation-
ally Induced Quantum Interference’. Phys. Rev. Lett. 34 (1975), 1472–1474.
doi: 10.1103/PhysRevLett.34.1472 ↪→ 1.

[CP51] E. Corinaldesi and A. Papapetrou. ‘Spinning test-particles in general relativ-
ity. II’. Proc. R. Soc. A 209 (1951), 259–268. doi: 10.1098/rspa.1951.0201
↪→ 94.

[Dar20] C. G. Darwin. ‘The dynamical motions of charged particles’. Philos. Mag. J.
Sci. 39 (1920), 537–551. doi: 10.1080/14786440508636066 ↪→ 48.

[DeW52] Bryce Seligman DeWitt. ‘Point Transformations in Quantum Mechanics’.
Phys. Rev. 85 (1952), 653–661. doi: 10.1103/PhysRev.85.653 ↪→ 33.

[Dim+08] Savas Dimopoulos, Peter W. Graham, Jason M. Hogan and Mark A. Ka-
sevich. ‘General relativistic effects in atom interferometry’. Phys. Rev. D 78
(2008), 042003. doi: 10.1103/PhysRevD.78.042003 ↪→ 2, 16, 111.

[Dix70] W. G. Dixon. ‘Dynamics of Extended Bodies in General Relativity. I. Mo-
mentum and Angular Momentum’. Proc. R. Soc. A 314 (1970), 499–527. doi:
10.1098/rspa.1970.0020 ↪→ 94.

[Ehl19] Jürgen Ehlers. ‘On the Newtonian limit of Einstein’s theory of gravitation’.
Gen. Relativ. Gravit. 51 (2019), 163. doi: 10.1007/s10714-019-2624-0.
Republication of original paper [Ehl81] as ‘Golden Oldie’ ↪→ 11.

[Ehl81] Jürgen Ehlers. ‘Über den Newtonschen Grenzwert der Einsteinschen Grav-
itationstheorie’. In: Grundlagenprobleme der modernen Physik: Festschrift für
Peter Mittelstaedt zum 50. Geburtstag. Ed. by J. Nitsch, J. Pfarr and E. W.
Stachow. Mannheim: Bibliographisches Institut, 1981, 65–84 ↪→ 11, 126.

[Far+14] T. Farah, C. Guerlin, A. Landragin, Ph. Bouyer, S. Gaffet, F. Pereira Dos
Santos and S. Merlet. ‘Underground Operation at Best Sensitivity of the
Mobile LNE-SYRTE Cold Atom Gravimeter’. Gyroscopy and Navigation 5
(2014), 266–274. doi: 10.1134/S2075108714040051 ↪→ 1.

126

https://doi.org/10.1103/PhysRevD.97.084023
https://doi.org/10.1103/PhysRevLett.34.1472
https://doi.org/10.1098/rspa.1951.0201
https://doi.org/10.1080/14786440508636066
https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1103/PhysRevD.78.042003
https://doi.org/10.1098/rspa.1970.0020
https://doi.org/10.1007/s10714-019-2624-0
https://doi.org/10.1134/S2075108714040051


Bibliography

[FB99] Gordon N. Fleming and Jeremy Butterfield. ‘Strange positions’. In: From
Physics to Philosophy. Ed. by Jeremy Butterfield and Constantine Pagonis.
Cambridge: Cambridge University Press, 1999, 108–165. doi: 10.1017/
CBO9780511597947.008 ↪→ 83.

[Fle00] Gordon N. Fleming. ‘Reeh-Schlieder Meets Newton-Wigner’. Philos. Sci.
67 (2000). Proceedings of the 1998 Biennial Meetings of the Philosophy of
Science Association. Part II: Symposia Papers, S495–S515. doi: 10.1086/
392841 ↪→ 83.

[Fle65] Gordon N. Fleming. ‘Covariant Position Operators, Spin, and Locality’.
Phys. Rev. 137 (1965), B188–B197. doi: 10.1103/PhysRev.137.B188 ↪→ 81,
82, 91, 92, 94, 109.

[Fle66] Gordon N. Fleming. ‘A Manifestly Covariant Description of Arbitrary
Dynamical Variables in Relativistic Quantum Mechanics’. J. Math. Phys. 7
(1966), 1959–1981. doi: 10.1063/1.1704880 ↪→ 91.

[Fre26] J. Frenkel. ‘Die Elektrodynamik des rotierenden Elektrons’. Z. Phys. 37
(1926), 243–262. doi: 10.1007/BF01397099 ↪→ 94.

[GG12] Domenico Giulini and André Großardt. ‘The Schrödinger–Newton equation
as a non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields’.
Class. Quantum Grav. 29 (2012), 215010. doi: 10.1088/0264-9381/29/21/
215010 ↪→ 15, 16, 23, 26.

[Gie+19] Enno Giese, Alexander Friedrich, Fabio Di Pumpo, Albert Roura, Wolfgang
P. Schleich, Daniel M. Greenberger and Ernst M. Rasel. ‘Proper time in
atom interferometers: Diffractive versus specular mirrors’. Phys. Rev. A 99
(2019), 013627. doi: 10.1103/PhysRevA.99.013627 ↪→ 2, 111, 112.

[Giu14] Domenico Giulini. ‘Dynamical and Hamiltonian Formulation of General
Relativity’. In: Springer Handbook of Spacetime. Ed. by Abhay Ashtekar and
Vesselin Petkov. Berlin, Heidelberg: Springer, 2014. Chap. 17, 323–362. doi:
10.1007/978-3-642-41992-8_17 ↪→ 18, 115.

[Giu15] Domenico Giulini. ‘Energy-Momentum Tensors and Motion in Special Re-
lativity’. In: Equations of Motion in Relativistic Gravity. Ed. by Dirk Puetzfeld,
Claus Lämmerzahl and Bernard Schutz. Vol. 179. Fundamental Theories of
Physics. Cham: Springer, 2015. Chap. 3, 121–163. doi: 10.1007/978-3-319-
18335-0_3 ↪→ 87, 88, 90, 96.

127

https://doi.org/10.1017/CBO9780511597947.008
https://doi.org/10.1017/CBO9780511597947.008
https://doi.org/10.1086/392841
https://doi.org/10.1086/392841
https://doi.org/10.1103/PhysRev.137.B188
https://doi.org/10.1063/1.1704880
https://doi.org/10.1007/BF01397099
https://doi.org/10.1088/0264-9381/29/21/215010
https://doi.org/10.1088/0264-9381/29/21/215010
https://doi.org/10.1103/PhysRevA.99.013627
https://doi.org/10.1007/978-3-642-41992-8_17
https://doi.org/10.1007/978-3-319-18335-0_3
https://doi.org/10.1007/978-3-319-18335-0_3


Bibliography

[Giu18] Domenico Giulini. ‘Laue’s theorem revisited: Energy–momentum tensors,
symmetries, and the habitat of globally conserved quantities’. Int. J. Geom.
Methods Mod. Phys. 15 (2018), 1850182. doi: 10.1142/S0219887818501827
↪→ 92.

[GWZ18] Dong-Feng Gao, Jin Wang and Ming-Sheng Zhan. ‘Atomic Interferometric
Gravitational-Wave Space Observatory (AIGSO)’. Commun. Theor. Phys.
69 (2018), 37–42. doi: 10.1088/0253-6102/69/1/37 ↪→ 2.

[Hal01] Hans Halvorson. ‘Reeh-Schlieder Defeats Newton-Wigner: On Alternative
Localization Schemes in Relativistic Quantum Field Theory’. Philos. Sci. 68
(2001), 111–133. doi: 10.1086/392869 ↪→ 83.

[HE73] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time.
Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge
University Press, 1973. doi: 10.1017/CBO9780511524646 ↪→ 56.

[Heg74] Gerhard C. Hegerfeldt. ‘Remark on causality and particle localization’. Phys.
Rev. D 10 (1974), 3320–3321. doi: 10.1103/PhysRevD.10.3320 ↪→ 83.
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